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Abstract. We prove in this paper the existence of solutions of strongly nonlinear parabolic problems with natural

growth terms and L1 data in Musielak-Orlicz-Sobolev spaces. An approximation and a compactness results in

inhomogeneous Musielak-Orlicz-Sobolev spaces have also been provided.
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1. INTRODUCTION

Let Ω a bounded open subset of Rn and let Q be the cylinder Ω× (0,T ) with some given

T > 0.

We consider the strongly nonlinear parabolic problem
∂u
∂ t +A(u)+g(x, t,u,∇u) = f in Q

u(x, t) = 0 on ∂Ω× (0,T )

u(x,0) = u0(x) in Ω

(1)
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where A =− div (a(x, t,u,∇u)) is an operator of Leray-Lions type, g is a nonlinearity with the

sign condition but any restriction on its growth and f ∈ L1.

This result generalizes analogous ones of Lions [26], Landes [22] when g≡ 0 and of Brezis-

Browder [11], Landes.Mustonen [23] for g ≡ g(x, t,u). See also [9, 10] for related topics. In

these results, the function a is supposed to satisfy a polynomial growth condition with respect

to u and ∇u.

In the case where a satisfies a more general growth condition with respect to u and ∇u, it is

shown in [14] that the adequate space in which (1) can be studied is the inhomogeneous Orlicz-

Sobolev space W 1,xLM(Q) where the N-function M is related to the actual growth of a. The

solvability of (1) in this setting is proved by Donaldson [14] for g ≡ 0 and by Robert [28] for

g≡ g(x, t,u) when A is monotone, t2�M(t) and M satisfies a ∆2 condition and also by Elmahi

[16] for g = g(x, t,u,∇u) when M satisfies a ∆′ condition and M(t)� tN/(N−1) as application

of some LM compactness results in W 1,xLM(Q), see [15].

The solvability of (1) in this setting is proved by Elmahi-Meskine [19] for g ≡ 0 and for

g≡ g(x, t,u,∇u) in [18], without assuming any restriction on the N-function M.

In a recent work, the authors [3] have established an existence result for problems of the

form (1), when g≡ 0, without assuming any restriction on the Musielak function ϕ , and when

g≡ g(x, t,u,∇u), in [2].

It is our purpose in this paper to prove, in the case where f belongs to L1(Q), the existence

of solutions for problem (1) in the setting of Musielak-Orlicz spaces for general Musielak func-

tion ϕ with a nonlinearity g(x, t,u,∇u) having natural growth with respect to the gradient. In

section 3 some new approximation result in inhomogeneous Musielak-Orlicz-Sobolev spaces

(see Theorem 1), and, on the other hand, to prove a trace result (see Lemma 3). In Section

4, we establish L1-compactness results in the inhomogeneous Musielak-Orlicz-Sobolev spaces

W 1,xLϕ(Q). Section 5 contains the main result of this paper.

Our result generalizes that of the Elmahi-Meskine in [17] to the case of inhomogeneous

Musielak- Orlicz-Sobolev spaces.
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Let us point out that our result can be applied in the particular case when ϕ(x, t) = t p(x), in

this case we use the notations Lp(x)(Ω) = Lϕ(Ω), and W m,p(x)(Ω) = W mLϕ(Ω). These spaces

are called Variable exponent Lebesgue and Sobolev spaces.

For some classical and recent results on elliptic and parabolic problems in Orlicz-sobolev

spaces and a Musielak-Orlicz-Sobolev spaces, we refer to [1, 3, 4, 5, 8, 14, 16, 17, 18, 19, 20,

21, 29].

2. PRELIMINARIES

In this section we list briefly some definitions and facts about Musielak-Orlicz-Sobolev

spaces. Standard reference is [27]. We also include the definition of inhomogeneous Musielak-

Orlicz-Sobolev spaces and some preliminaries Lemmas to be used later.

Musielak-Orlicz-Sobolev spaces: Let Ω be an open subset of Rn.

A Musielak-Orlicz function ϕ is a real-valued function defined in Ω×R+ such that:

a): ϕ(x, t) is an N-function i.e. convex, nondecreasing, continuous, ϕ(x,0) = 0, ϕ(x, t)>

0 for all t > 0 and

lim
t−→0

sup
x∈Ω

ϕ(x, t)
t

= 0

lim
t−→∞

inf
x∈Ω

ϕ(x, t)
t

= 0.

b): ϕ(., t) is a Lebesgue measurable function

Now, let ϕx(t) = ϕ(x, t) and let ϕ−1
x be the non-negative reciprocal function with respect to t,

i.e the function that satisfies

ϕ
−1
x (ϕ(x, t)) = ϕ(x,φ−1

x ) = t.

For any two Musielak-Orlicz functions ϕ and γ we introduce the following ordering:

c): if there exists two positives constants c and T such that for almost everywhere x ∈Ω:

ϕ(x, t)≤ γ(x,ct) for t ≥ T

we write ϕ ≺ γ and we say that γ dominates ϕ globally if T = 0 and near infinity if

T > 0.
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d): if for every positive constant c and almost everywhere x ∈Ω we have

lim
t→0

(sup
x∈Ω

ϕ(x,ct)
γ(x, t)

) = 0 or lim
t→∞

(sup
x∈ϕ

ϕ(x,ct)
γ(x, t)

) = 0

we write ϕ ≺≺ γ at 0 or near ∞ respectively, and we say that ϕ increases essentially

more slowly than γ at 0 or near infinity respectively.

In the sequel the measurability of a function u : Ω 7→ R means the Lebesgue measurability.

We define the functional

ρϕ,Ω(u) =
∫

Ω

ϕ(x, |u(x)|)dx

where u : Ω 7→ R is a measurable function.

The set

Kϕ(Ω) =
{

u : Ω→ R mesurable /ρϕ,Ω(u)<+∞
}
.

is called the Musielak-Orlicz class (the generalized Orlicz class).

The Musielak-Orlicz space (the generalized Orlicz spaces) Lϕ(Ω) is the vector space gener-

ated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω).

Equivelently:

Lϕ(Ω) =

{
u : Ω→ R mesurable /ρϕ,Ω(

|u(x)|
λ

)<+∞, for some λ > 0
}

Let

ψ(x,s) = sup
t≥0
{st−ϕ(x, t)},

ψ is the Musielak-Orlicz function complementary to ( or conjugate of ) ϕ(x, t) in the sense of

Young with respect to the variable s.

On the space Lϕ(Ω) we define the Luxemburg norm:

||u||ϕ,Ω = inf{λ > 0/
∫

Ω

ϕ(x,
|u(x)|

λ
)dx,≤ 1}.

and the so-called Orlicz norm :

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫
Ω

|u(x)v(x)|dx.

where ψ is the Musielak-Orlicz function complementary to ϕ . These two norms are equivalent

[27].
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The closure in Lϕ(Ω) of the set of bounded measurable functions with compact support in Ω

is denoted by Eϕ(Ω). It is a separable space and Eψ(Ω)∗ = Lϕ(Ω) [27].

The following conditions are equivalent:

e): Eϕ(Ω) = Kϕ(Ω)

f): Kϕ(Ω) = Lϕ(Ω)

g): ϕ has the ∆2 property.

We recall that ϕ has the ∆2 property if there exists k > 0 independent of x ∈Ω and a nonneg-

ative function h , integrable in Ω such that ϕ(x,2t)≤ kϕ(x, t)+h(x) for large values of t, or for

all values of t, according to whether Ω has finite measure or not.

Let us define the modular convergence: we say that a sequence of functions un ∈ Lϕ(Ω) is

modular convergent to u ∈ Lϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

ρϕ,Ω(
un−u

k
) = 0.

For any fixed nonnegative integer m we define

W mLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ m Dαu ∈ Lϕ(Ω)}

where α = (α1,α2, ...,αn) with nonnegative integers αi; |α|= |α1|+ |α2|+ ...+ |αn| and Dαu

denote the distributional derivatives.

The space W mLϕ(Ω) is called the Musielak-Orlicz-Sobolev space.

Now, the functional

ρϕ,Ω(u) = ∑
|α|≤m

ρϕ,Ω(Dαu),

for u ∈W mLϕ(Ω) is a convex modular. and

||u||mϕ,Ω = inf{λ > 0 : ρϕ,Ω(
u
λ
)≤ 1}

is a norm on W mLϕ(Ω).

The pair 〈W mLϕ(Ω), ||u||m
ϕ,Ω〉 is a Banach space if ϕ satisfies the following condition:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x,1)≥ c,
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as in [27].

The space W mLϕ(Ω) will always be identified to a σ(ΠLϕ ,ΠEψ) closed subspace of the

product ∏|α|≤m Lϕ(Ω) = ∏Lϕ .

Let W m
0 Lϕ(Ω) be the σ(ΠLϕ ,ΠEψ) closure of D(Ω) in W mLϕ(Ω).

Let W mEϕ(Ω) be the space of functions u such that u and its distribution derivatives up to

order m lie in Eϕ(Ω), and let W m
0 Eϕ(Ω) be the (norm) closure of D(Ω) in W mLϕ(Ω).

The following spaces of distributions will also be used:

W−mLψ(Ω) = { f ∈ D′(Ω); f = ∑
|α|≤m

(−1)|α|Dα fα with fα ∈ Lψ(Ω)}

W−mEψ(Ω) = { f ∈ D′(Ω); f = ∑
|α|≤m

(−1)|α|Dα fα with fα ∈ Eψ(Ω)}

As we did for Lϕ(Ω), we say that a sequence of functions un ∈W mLϕ(Ω) is modular conver-

gent to u ∈W mLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

ρϕ,Ω(
un−u

k
) = 0.

From [27], for two complementary Musielak-Orlicz functions ϕ and ψ the following inequal-

ities hold:

h) : the young inequality:

t.s≤ ϕ(x, t)+ψ(x,s) for t,s≥ 0, x ∈Ω

i) : the Hölder inequality:∣∣∣∣∫
Ω

u(x)v(x) dx
∣∣∣∣≤ ||u||ϕ,Ω|||v|||ψ,Ω.

for all u ∈ Lϕ(Ω) and v ∈ Lψ(Ω).

Inhomogeneous Musielak-Orlicz-Sobolev spaces:

Let Ω an bounded open subset of Rn and let Q = Ω×]0,T [ with some given T ¿ 0. Let ϕ be

a Musielak function. For each α ∈Nn, denote by Dα
x the distributional derivative on Q of order

α with respect to the variable x ∈ Rn. The inhomogeneous Musielak-Orlicz-Sobolev spaces of

order 1 are defined as follows.

W 1,xLϕ(Q) = {u ∈ Lϕ(Q) : ∀|α| ≤ 1 Dα
x u ∈ Lϕ(Q)}
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and

W 1,xEϕ(Q) = {u ∈ Eϕ(Q) : ∀|α| ≤ 1 Dα
x u ∈ Eϕ(Q)}

The last space is a subspace of the first one, and both are Banach spaces under the norm

‖u‖= ∑
|α|≤m

‖Dα
x u‖ϕ,Q.

We can easily show that they form a complementary system when Ω is a Lipschitz domain [7].

These spaces are considered as subspaces of the product space ΠLϕ(Q) which has (N + 1)

copies. We shall also consider the weak topologies σ(ΠLϕ ,ΠEψ) and σ(ΠLϕ ,ΠLψ). If

u ∈ W 1,xLϕ(Q) then the function : t 7−→ u(t) = u(t, .) is defined on (0,T ) with values in

W 1Lϕ(Ω). If, further, u ∈W 1,xEϕ(Q) then this function is a W 1Eϕ(Ω)-valued and is strongly

measurable. Furthermore the following imbedding holds: W 1,xEϕ(Q) ⊂ L1(0,T ;W 1Eϕ(Ω)).

The space W 1,xLϕ(Q) is not in general separable, if u ∈W 1,xLϕ(Q), we can not conclude that

the function u(t) is measurable on (0,T ). However, the scalar function t 7→ ‖u(t)‖ϕ,Ω is in

L1(0,T ). The space W 1,x
0 Eϕ(Q) is defined as the (norm) closure in W 1,xEϕ(Q) of D(Q). We

can easily show as in [7] that when Ω a Lipschitz domain then each element u of the closure

of D(Q) with respect of the weak * topology σ(ΠLϕ ,ΠEψ) is limit, in W 1,xLϕ(Q), of some

subsequence (ui) ⊂ D(Q) for the modular convergence; i.e., there exists λ > 0 such that for all

|α| ≤ 1, ∫
Q

ϕ(x,(
Dα

x ui−Dα
x u

λ
))dxdt→ 0 as i→ ∞,

this implies that (ui) converges to u in W 1,xLϕ(Q) for the weak topology σ(ΠLM,ΠLψ). Con-

sequently

D(Q)
σ(ΠLϕ ,ΠEψ )

= D(Q)
σ(ΠLϕ ,ΠLψ )

,

this space will be denoted by W 1,x
0 Lψ(Q). Furthermore, W 1,x

0 Eϕ(Q) =W 1,x
0 Lϕ(Q)∩ΠEϕ .

We have the following complementary systemW 1,x
0 Lϕ(Q) F

W 1,x
0 Eϕ(Q) F0

 ,

F being the dual space of W 1,x
0 Eϕ(Q). It is also, except for an isomorphism, the quotient of

ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥, and will be denoted by F = W−1,xLψ(Q) and it is shown
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that

W−1,xLψ(Q) =
{

f = ∑
|α|≤1

Dα
x fα : fα ∈ Lψ(Q)

}
.

This space will be equipped with the usual quotient norm

‖ f‖= inf ∑
|α|≤1

‖ fα‖ψ,Q

where the inf is taken on all possible decompositions

f = ∑
|α|≤1

Dα
x fα , fα ∈ Lψ(Q).

The space F0 is then given by

F0 =
{

f = ∑
|α|≤1

Dα
x fα : fα ∈ Eψ(Q)

}
and is denoted by F0 =W−1,xEψ(Q).

3. MAIN RESULTS

4. APPROXIMATION THEOREM AND TRACE RESULT

In this section, Ω be a bounded Lipschitz domain in RN with the segment property and

I is a subinterval of R (both possibly unbounded) and Q = Ω× I. It is easy to see that Q also

satisfies Lipschitz domain.

Definition 1. We say that un→ u in W−1,xLψ(Q)+L2(Q) for the modular

convergence if we can write

un = ∑
|α|≤1

Dα
x uα

n +u0
n and u = ∑

|α|≤1
Dα

x uα +u0

with uα
n → uα in Lψ(Q) for modular convergence for all |α| ≤ 1

and uα
n → uα strongly in L2(Q).

We shall prove the following approximation theorem, which plays a fundamental role

when the existence of solutions for parabolic problems is proved.

Theorem 1. If u ∈W 1,xLϕ(Q)∩L2(Q) (respectively W 1,x
0 Lϕ(Q)∩L2(Q))

and ∂u
∂ t ∈ W−1,xLψ(Q) + L2(Q), then there exists a sequence (v j) in D(Q) (respectively

D((I),D(Ω)) ) such that v j→ u in W 1,xLϕ(Q)∩L2(Q) and
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∂v j
∂ t →

∂u
∂ t in W−1,xLψ(Q)+L2(Q) for the modular convergence.

Proof. Let u ∈W 1,xLϕ(Q)∩L2(Q) such that ∂u
∂ t ∈W−1,xLψ(Q)+L2(Q)

and let ε > 0 be given. Writing ∂u
∂ t = ∑|α|≤1 Dα

x uα +u0, where uα ∈ Lψ(Q)

for all |α| ≤ 1 and u0 ∈ L2(Q), we will show that there exists λ > 0(depending only on u and

N)

and there exists v ∈ D(Q) for which we can write ∂v
∂ t = ∑|α|≤1 Dα

x vα + v0 with vα ,v0 ∈ D(Q)

such that ∫
Q

ϕ(x,
Dα

x v−Dα
x u

λ
)dxdt ≤ ε,∀|α| ≤ 1,(2)

||v−u||L2(Q) ≤ ε,(3)

||v0−u0||L2(Q) ≤ ε,(4)

∫
Q

ψ(x,
vα −uα

λ
)dxdt ≤ ε,∀|α| ≤ 1,(5)

The equation (3) flows from a slight adaptation of the arguments of [7],

(4) and (5) flow also from classical approximation results.

Regrading the equation (6) it is enough to prove that D(Q) is dense in Lψ(Q) for this end.

We use the fact that the log-HÖlder continuity(commutes with the complementarity) i.e: if ϕ is

log-HÖlder the its complementary ψ also it is, and proceed as in [7] (with ϕ and ψ interchanged

) and using of course RN+1 instead of RN and Q = Ω× (0,T ) instead of Ω.

These facts lead us to prove that

||Kε f ||ψ,Q ≤C|| f ||ψ,Q,∀ f ∈ Lψ(Q)

(with Kε f (x, t) = k−1
ε

∫
Q Kε(x− y) f (kεy, t)dy ,Kε(x) = 1

εN K( x
ε
) and K(x) is a measurable func-

tion with support in the ball BR = B(0,R) see [7]).

And then we deduce that D(Q) is dense in Lψ(Q) for the modular convergence which gives the

desired conclusion.

The case of W 1,x
0 Lϕ(Q)∩L2(Q) is similar to the above arguments as in [7].

Remark 1. If, in the statement of Theorem 1, one consider Ω×R instead of Q,

we have D(Ω×R) is dense in u ∈W 1,x
0 Lϕ(Ω×R)∩ L2(Ω×R) : ∂u

∂ t ∈W 1,x
0 Lψ(Ω×R) +
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L2(Ω×R) for the modular convergence. This follows trivially from the fact that D(R,D(Ω))≡

D(Ω×R).

A first application of Theorem 1 is the following trace result generalizing a classical result

which states that if u belong to L2(a,b;H1
0 (Ω)) and ∂u

∂ t belongs to L2(a,b;H−1(Ω)), then u is in

C([a,b],L2(Ω)).

Lemma 1. Let a < b ∈ R and let Ω be a bounded Lipschitz domain in RN . Then {u ∈

W 1,x
0 Lϕ(Ω× (a,b))∩L2(Ω× (a,b)) : ∂u

∂ t ∈W−1,xLψ(Ω× (a,b))+L2(Ω× (a,b))} is a subset

of C([a,b],L2(Ω)).

Proof. Let u ∈W 1,x
0 Lϕ(Ω× (a,b))∩L2(Ω× (a,b)) such that W−1,xLψ(Ω× (a,b))+L2(Ω×

(a,b)). After two consecutive reflection first with respect to t = b and then with respect to t = b,

û(x, t) = u(x, t)χ(a,b)+u(x,2b− t)χ(b,2b−a) on Ω× (a,2b−a)

ũ(x, t) = û(x, t)χ(a,2b−a)+ û(x,2a− t)χ(3a−2b,a) on Ω× (3a−2b,2b−a),

we get a function ũ ∈W 1,x
0 Lϕ(Ω× (3a−2b,2b−a))∩L2(Ω× (3a−2b,2b−a))

such that ∂ ũ
∂ t ∈W−1,xLψ(Ω× (3a−2b,2b−a))+L2(Ω× (3a−2b,2b−a)). Now, by letting a

function

η ∈D(R) with η = 1 on [a,b] and suppη ⊂ (3a−2b,2b−a), setting u = η ũ,

and using standard arguments (see [[11], Lemme IV, Remarque 10, p. 158]), we have u =

u on Ω× (a,b) ũ ∈W 1,x
0 Lϕ(Ω×R)∩L2(Ω×R) ∂ ũ

∂ t ∈W−1,xLψ(Ω×R)+L2(Ω×R).

Now let v j ∈D(Ω×R) be the sequence given by Theorem 1 corresponding to u,

that is,

v j→ u ∈W 1,x
0 Lϕ(Ω×R)∩L2(Ω×R) and

∂v j

∂ t
→ ∂u

∂ t
∈W−1,xLψ(Ω×R)+L2(Ω×R)

for the modular convergence.

We have∫
Ω

(vi(τ)− v j(τ))
2dx = 2

∫
Ω

∫
τ

−∞

(vi− v j)(
∂vi

∂ t
−

∂v j

∂ t
)dxdt→ 0, as i, j→ ∞

from which one deduces that v j is a Cauchy sequence in C(R,L2(Ω)), and since the limit of v j

in L2(Ω×R) is u, we have v j→ u inC(R,L2(Ω)). Consequently, u ∈C([a,b],L2(Ω)).

In order to deal with the time derivative, we introduce a time mollification of a function u ∈

Lϕ(Q).
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Thus we define, for all µ > 0 and all (x, t) ∈ Q

uµ(x, t) = µ

∫ t

−∞

ũ(x,s)exp(µ(s− t))ds,(6)

where ũ(x,s) = u(x,s)χ(0,T )(s) is the zero extension of u.

Throughout the paper the index µ always indicates this mollification.

Proposition 1. If u ∈ Lϕ(Q) then uµ is measurable in Q and ∂uµ

∂ t = µ(u− uµ) and if u ∈

Lϕ(Q) then

∫
Q

ϕ(x,uµ)dxdt ≤
∫

Q
ϕ(x,u)dxdt.

Proof. Since (x, t,s) 7→ u(x,s)exp(µ(s− t)) is measurable in Ω× [0,T ]× [0,T ], we deduce

that uµ is measurable by Fubini’s theorem. By Jensen’s integral inequality we have, since∫ 0
−∞

exp(µs)ds = 1,

ϕ(x,
∫ t

−∞

µ ũ(x,s)exp(µ(s− t))ds) = ϕ(x,
∫ 0

−∞

µexp(µs)ũ(x,s+ t)ds)

≤
∫ 0

−∞

µexp(µs)ϕ(x, ũ(x,s+ t))ds

which implies

∫
Q

ϕ(x,uµ(x, t))dxdt ≤
∫

Ω×R
(
∫ 0

−∞

µexp(µs)ϕ(x, ũ(x,s+ t)ds))dxdt

≤
∫ 0

−∞

µexp(µs)(
∫

Ω×R
ϕ(x, ũ(x,s+ t))dxdt)ds

≤
∫ 0

−∞

µexp(µs)(
∫

Q
ϕ(x,u(x, t))dxdt)ds

=
∫

Q
ϕ(x,u)dxdt.

Furthermore
∂uµ

∂ t = limδ→0
1
δ
(exp(−µδ )−1)uµ(x, t)+ limδ→0

1
δ

∫ t+δ

t u(x,s)exp(µ(s−(t+δ ))ds=−µuµ +

µu.

Proposition 2. (1) If u∈ Lϕ(Q) then uµ→ u as µ→∞ in Lϕ(Q) for the modular convergence.

(2) If u ∈W 1,xLϕ(Q) then uµ → u as µ → ∞ in W 1,xLϕ(Q) for the modular convergence.
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Proof. (1) Let (φk)⊂D(Q) such that φk→ u in Lϕ(Q) for the modular convergence.

Let λ > 0 large enough such that

u
λ
∈Lϕ(Q) and

∫
Q

ϕ(x,
φk−u

λ
)dxdt→ 0 as k→ ∞.

For a.e. (x, t) ∈ Q we have

|(φk)µ(x, t)− (φk)(x, t)|=
1
µ
|∂φk

∂ t
(x, t)| ≤ 1

µ
||∂φk

∂ t
||∞.

On the other hand ∫
Q

ϕ(x,
uµ −u

3λ
)dxdt ≤ 1

3

∫
Q

ϕ(x,
uµ − (φk)µ

λ
)dxdt

+
1
3

∫
Q

ϕ(x,
(φk)µ −φk

λ
)dxdt

+
1
3

∫
Q

ϕ(x,
φk−u

λ
)dxdt

≤ 1
3

∫
Q

ϕ(x,
(φk−u)µ

λ
)dxdt

+
1
3

∫
Q

ϕ(x,
(φk)µ −φk

λ
)dxdt

+
1
3

∫
Q

ϕ(x,
φk−u

λ
)dxdt.

This implies that∫
Q

ϕ(x,
uµ −u

3λ
)dxdt ≤ 2

3

∫
Q

ϕ(x,
φk−u

λ
)dxdt +

1
3

ϕ(x,
1

µλ
||∂φk

∂ t
||∞)meas(Q).

Let ε > 0. There exists k such that∫
Q

ϕ(x,
φk−u

λ
)dxdt ≤ ε,

and there exists µ0 such that

ϕ(x,
1

µλ
||∂φk

∂ t
||∞)meas(Q)≤ ε for all µ ≥ µ0.

Hence ∫
Q

ϕ(x,
uµ −u

3λ
)dxdt ≤ ε for all µ ≥ µ0.

(2) Since ∀α, |α| ≤ 1, we have Dα
x (uµ) = (Dα

x u)µ , consequently, the first part above applied on

each Dα
x u, gives the result.
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Remark 2. If u ∈ Eϕ(Q), we can choose λ arbitrary small since D(Q) is (norm) dense in

Eϕ(Q).

Thus,for all λ > 0 ∫
Q

ϕ(x,
uµ −u

λ
)dxdt→ 0 as µ → ∞

and uµ → u strongly in Eϕ(Q).Idem for W 1,xEϕ(Q).

Proposition 3. If un→ u in W 1,xLϕ(Q) strongly (resp., for the modular convergence)

then (un)µ → uµ in W 1,xLϕ(Q) strongly (resp., for the modular convergence).

Proof. For all λ > 0 (resp., for some λ > 0),∫
Q

ϕ(x,
Dα

x ((un)µ)−Dα
x (u)µ

λ
)dxdt ≤

∫
Q

ϕ(x,
Dα

x (un)−Dα
x u

λ
)dxdt→ 0 as n→ ∞,

then (un)µ → uµ in W 1,xLϕ(Q) strongly (resp., for the modular convergence).

5. COMPACTNESS RESULTS

In this section, we shall prove some compactness theorems in inhomogeneous Musielak-

Orlicz- Sobolev spaces which will be applied to get existence theorem for parabolic problems.

For each h > 0, define the usual translated τh f of the function f byτh f (t) = f (t +h).

If f is defined on [0,T ] then τh f is defined on [−h,T −h].

First of all, recall the following compactness result proved by Simon [30].

Lemma 2. Let ϕ be a Musielak function. Let Y be a Banach space such that the following

continuous imbedding holds L1(Ω)⊂ Y . Then for all ε > 0 and all λ > 0, there is Cε > 0 such

that for all u ∈W 1,x
0 Lϕ(Q), with |∇u|

λ
∈Lϕ(Q),

||u||L1(Q) ≤ ελ (
∫

Q
ϕ(x,

|∇u|
λ

)dxdt +T )+Cε ||u||L1(0,T ;Y ).

Proof. Since W 1
0 Lϕ(Ω) ⊂ L1(Ω) with compact imbedding, then for all ε > 0, there is Cε > 0

such that for all v ∈W 1
0 Lϕ(Ω):

||v||L1(Ω) ≤ ε||∇v||Lϕ (Ω)+Cε ||v||Y .(7)

Indeed, if the above assertion holds false, there is ε0 > 0 and vn ∈W 1
0 Lϕ(Ω) such that

||vn||L1(Ω) ≥ ε0||∇vn||Lϕ (Ω)+n||vn||Y .
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This gives, by setting wn =
vn

||∇vn||Lϕ (Ω)
:

||wn||L1(Ω) ≥ ε0 +n||wn||Y , ||∇wn||Lϕ (Ω) = 1.

Since (wn) is bounded in W 1
0 Lϕ(Ω) then for a subsequence

wn ⇀ w in W 1
0 Lϕ(Ω) for σ(ΠLϕ ,ΠEψ) and strongly in L1(Ω).

Thus ||wn||L1(Ω) is bounded and ||wn||Y → 0 as n→ ∞.We deduce wn→ 0 in Y and that w = 0

implying that ε0 ≤ ||wn||L1(Ω)→ 0, a contradiction.

Using v = u(t) in (7) for all u ∈W 1,x
0 Lϕ(Q) with |∇u|

λ
∈Lϕ(Q) and a.e. t in (0,T ), we have

||u(t)||L1(Ω) ≤ ε||∇u(t)||Lϕ (Ω)+Cε ||u(t)||Y .

Since
∫

Q ϕ(x, |∇u(x,t)|
λ

)dxdt < ∞ we have thanks to Fubini’s theorem∫
Ω

ϕ(x, |∇u(x,t)|
λ

)dx < ∞ for a.e t in (0,T ), and then

||∇u(t)||Lϕ (Ω) ≤ λ (
∫

Ω

ϕ(x,
|∇u(x, t)|

λ
)dx+1),

which implies that

||u(t)||L1(Ω) ≤ ελ (
∫

Ω

ϕ(x,
|∇u(x, t)|

λ
)dx+1)+Cε ||u(t)||Y ).

Integrating this over (0,T ) yields

||u||L1(Q) ≤ ελ (
∫

Q
ϕ(x,

|∇u(x, t)|
λ

)dxdt +T )+Cε

∫ T

0
||u(t)||Y )dt

and finally

||u||L1(Q) ≤ ελ (
∫

Q
ϕ(x,

|∇u|
λ

)dxdt +T )+Cε ||u||L1(,0,T ;Y ).

We also prove the following lemma which allows us to enlarge the space Y whenever necessary.

Lemma 3. Let Y be a Banach space such that L1(Ω)⊂ Y with continuous imbedding.

If F is bounded in W 1,x
0 Lϕ(Q) and is relatively compact in L1(0,T ;Y ) then F is relatively com-

pact in L1(Q) (and also in Eγ(Q) for all Musielak function γ � ϕ).

Proof. Let ε > 0 be given. Let C > 0 be such that
∫

Q ϕ(x, |∇ f |
C )dxdt ≤ 1 for all f ∈ F .

By the previous lemma, there exists Cε > 0 such that for all u ∈W 1,x
0 Lϕ(Q) with |∇u|

C ∈Lϕ(Q),
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||u(t)||L1(Q) ≤ 2εC
4C(1+T )(

∫
Q ϕ(x, |∇u|

2C )dxdt +T )+Cε ||u||L1(0,T ;Y ).

Moreover, there exists a finite sequence ( f i) in F satisfying

∀ f ∈ F,∃ fi such that || f − fi||L1(0,T ;Y ) ≤
ε

2Cε

so that

|| f − fi||L1(Q) ≤
ε

2(1+T )
(
∫

Q
ϕ(x,

|∇ f −∇ fi|
2C

)dxdt +T )+Cε || f − fi||L1(0,T ;Y ) ≤ ε

and hence F is relatively compact in L1(Q).

Since γ � ϕ then by using Vitali’s theorem, it is easy to see that F is relatively compact in

Eγ(Q).

Remark 3(see [16]). If F ⊂ L1(0,T ;B) is such that {∂ f
∂ t : f ∈ F} is bounded in F ⊂

L1(0,T ;B) then

||τh f − f ||L1(0,T ;B)→ 0 as h→ 0 uniformly with respect to f ∈ F .

Theorem 2. Let ϕ be a Musielak function. If F is bounded in W 1,xLϕ(Q) and {∂ f
∂ t : f ∈ F}

is bounded in W−1,xLψ(Q), then F is relatively compact in L1(Q).

Proof. Let γ and θ be Musielak functions such that γ � ϕ and θ � ψ near infinity.

For all 0 < t1 < t2 < T and all f ∈ F , we have

||
∫ t2

t1
f (t)dt||W 1

0 Eγ (Ω) ≤
∫ T

0
|| f (t)||W 1

0 Eγ (Ω)dt

≤C1|| f ||W 1,x
0 Eγ (Q)

≤C2|| f ||W 1,x
0 Eϕ (Q)

≤C,

where we have used the following continuous imbedding:

W 1,x
0 Lϕ(Q)⊂W 1,x

0 Eγ(Q)⊂ L1(0,T ;W 1
0 Eγ(Ω)).

Since the imbedding W 1
0 Lγ(Ω)⊂ L1(Ω) is compact we deduce that (

∫ t2
t1 f (t)dt) f∈F is relatively

compact in L1(Ω) and in W−1,1(Ω) as well.

On the other hand {∂ f
∂ t : f ∈ F} is bounded in W−1,xLψ(Q) and L1(0,T ;W−1,1(Ω) as well, since

W−1,xLψ(Q)⊂W−1,xEθ (Q)⊂ L1(0,T ;W−1Eθ (Ω))⊂ L1(0,T ;W−1,1(Ω))

with continuous imbedding.

By Remark 3 of [16], we deduce that ||τh f − f ||L1(0,T ;W−1,1(Ω))→ 0 uniformly in f ∈ F when
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h→ 0 and by using Theorem 2 of [16],F is relatively compact in L1(0,T ;W−1,1(Ω)).

Since L1(Ω)⊂W−1,1(Ω)) with continuous imbedding we can apply Lemma 3 to conclude that

F is relatively compact in L1(Q).

Corollary 1. Let ϕ be a Musielak function.

Let (un) be a sequence of W 1,xLϕ(Q) such that

un ⇀ u weakly in W 1,xLϕ(Q) for σ(ΠLϕ ,ΠLψ)

and
∂un

∂ t
= hn + kn in D ′(Q)

with hn bounded in W−1,xLψ(Q) and (kn) bounded in the space M (Q) of measures on Q.

then un→ u strongly in L1
loc(Q).

If further un ∈W 1,x
0 Lϕ(Q) then un→ u strongly in L1(Q).

Proof. It is easily adapted from that given in [10] by using Theorem 2 and Remark 3 instead of

Lemma 8 of [30].

6. EXISTENCE RESULT

Let Ω be a bounded Lipschitz domain in RN(N ≥ 2), T > 0 and set Q = Ω× (0,T ).

Throughout this section, we denote Qτ = Ω× (0,τ) for every τ ∈ [0,T ].

Let ϕ and γ two Musielak-Orlicz functions such that γ � ϕ .

Consider a second-order operator A : D(A)⊂W 1,xLϕ(Q)→W−1,xLψ(Q) of the form

A(u) =−diva(x, t,u,∇u),

where a : Ω× [0,T ]×R×RN → RN is a Carathéodory function, for almost every(x, t) ∈ Ω×

[0,T ] and all s ∈ R,ξ 6= ξ ∗ ∈ RN ,

|a(x, t,s,ξ )| ≤ β (c1(x, t)+ψ
−1
x γ(x,ϑ |s|)+ψ

−1
x ϕ(x,ϑ |ξ |))(8)

(a(x, t,s,ξ )−a(x, t,s,ξ ∗))(ξ −ξ
∗)> 0(9)

a(x, t,s,ξ )ξ ≥ α1ϕ(x,
|s|
λ
)(10)

a(x, t,s,ξ )ξ ≥ α2ϕ(x,
|ξ |
λ

)−d(x, t)(11)
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with c1(x, t) ∈ Eψ(Q),c1 ≥ 0,d(x, t) ∈ L1(Q),α1,α2,β ,ϑ > 0.

Assume that g : Ω× [0,T ]×R×RN → R is a Carathéodory function, for almost every(x, t) ∈

Ω× [0,T ] and for all s ∈ R,ξ ∈ RN :

|g(x, t,s,ξ )| ≤ b(|s|)(c2(x, t)+ϕ(x, |ξ |))(12)

g(x, t,s,ξ )s≥ 0(13)

with c2(x, t) ∈ L1(Q) and b : R+→ R+ is a continuous and nondecreasing function. Furthere-

more let

f ∈ L1(Q).(14)

Consider then the following parabolic initial-boundary value problem.
∂u
∂ t +A(u)+g(x, t,u,∇u) = f in Q

u(x, t) = 0 on ∂Ω× (0,T )

u(x,0) = u0(x) in Ω

(15)

where u0 is a given function in L1(Ω).

Definition 2. A measurable function u : Ω× (0,T )→ R is called entropy solution of (15)

if u belongs to L∞(0,T ;L1(Ω)),Tk(u) belongs to D(A)∩W 1,x
0 Lϕ(Q) for every k > 0,Sk(u(., t))

belongs to L1(Ω) for every t ∈ [0,T ] and every k > 0, g(x, t,u,∇u) is in L1(Q) and u satisfies:∫
Ω

Sk(u− v)(τ)dx+ 〈∂v
∂ t

,Tk(u− v)〉Qτ
+
∫

Qτ

a(x, t,u,∇u)∇Tk(u− v)dxdt

+
∫

Qτ

g(x, t,u,∇u)Tk(u− v)dxdt ≤
∫

Qτ

f Tk(u− v)dxdt +
∫

Ω

Sk(u0− v(0))dx(16)

for every τ ∈ [0,T ],k > 0, and for all v ∈ W 1,x
0 Lϕ(Q) ∩ L∞(Q) such that ∂v

∂ t belongs to

W−1,xLψ(Q)+L1(Q)(recall that Tk is the usual truncation at height k defined on R by Tk(s) =

min (k, max (s,−k)) and that Sk(s) =
∫ s

0 Tk(t)dt is its primitive vanishing on 0).

Note that, all the terms in (16) make sense since Tk(u− v) belongs to W 1,x
0 Lϕ(Q)∩ L∞(Q).

Moreover Lemma 1 implies that v ∈ C ([0,T ],L1(Ω)) and then the first and last terms are well

defined.

We shall prove the following existence theorem:
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Theorem 3. Assume that (8)-(14) hold true. Then the problem (15) admits at least one

entropy solution solution u ∈ C (([0,T ],L1(Ω)) satisfying u(x,0) = u0(x) for almost every x ∈

Ω.

Proof of Theorem 3. We divide the proof in four steps.

Step 1. A priori estimates.

Let ( fn) be a sequence of smooth functions such that fn→ f in L1(Q) and let (u0n) be a sequence

in L2(Ω) such that u0n→ u0 in L1(Ω)

Consider the sequence of approximate problems: un ∈ D(A)∩W 1,x
0 Lϕ(Q)∩C (([0,T ],L2(Ω)),un(x,0) = u0(x)

∂un
∂ t − div (a(x, t,Tn(un),∇un))+gn(x, t,un,∇un)vdxdt = fn

(17)

where

gn(x, t,s,ξ ) = Tn(g(x, t,s,ξ ))

. Note that gn(x, t,s,ξ )s≥ 0, |gn(x, t,s,ξ )| ≤ |g(x, t,s,ξ )| and |gn(x, t,s,ξ )| ≤ n.

Since gn is bounded for any fixed n > 0, then, by Theorem 3 of [2], there exists at last one

solution un of (17).

Note also that 〈u′n,v〉 is defined in the sense of distributions(where u
′
n = ∂un

∂ t means for the

time derivative of un).Since u
′
n = f −A(un)−gn is in W−1,xLψ(Q) we can extend 〈u′n,v〉 to all

v ∈W 1,x
0 Lϕ(Q).

Using in (17) the test function Tk(un)χ(0,τ), we get, for every τ ∈ (0,T )

∫
Ω

Sk(un(τ))dx+
∫

Qτ

a(x, t,Tk(un),∇un)∇Tk(un)dxdt ≤C1k(18)

where here and below C1 denote positive constants not depending on n and k.

Consider now for θ ,ε > 0 a function ρε
θ
∈ C 1(R) such that

ρ
ε
θ (s) =

 0 if |s| ≤ θ ,

sign(s) if |s| ≥ θ + ε,

(ρε
θ (s))

′ ≥ 0∀s ∈ R



STRONGLY NONLINEAR PARABOLIC PROBLEMS IN MUSIELAK-ORLICZ-SOBOLEV SPACES 19

then, by using ρε
θ
(un) as a test function in (17) and following [25], we can see that∫

{|un|>θ}
|gn(x, t,un,∇un)|dxdt ≤

∫
{|un|>θ}

| fn|dxdt +
∫
{|u0n|>θ}

|u0n|dxdt(19)

and so by letting θ → 0 and using Fatou’s lemma, we deduce that gn(x, t,un,∇un) is a bounded

sequence in L1(Q).

Moreover, we have from (10) and (18) that (Tk(un))n is bounded in W 1,x
0 Lϕ(Q) for every k >

0. Take a C 2(R), and nondecreasing function ζk such that ζk(s) = s for |s| ≤ k
2 and ζk(s) =

k sign(s) for |s| ≥ k. Multiplying the approximating equation by ζ ′k(un), we get

∂

∂ t
(ζk(un))− div (a(x, t,un,∇un)ζ

′
k(un))+a(x, t,un,∇un)ζ

′′
k (un)

+gn(x, t,un,∇un)ζ
′
k(un)) = fnζ

′
k(un))

in the sense of distributions. This implies, thanks to (18) and the fact that ζ ′k has compact

support, that ζk(un) is bounded in W 1,x
0 Lϕ(Q) while its time derivative ∂

∂ t (ζk(un)) is bounded in

W−1,xLψ(Q)+L1(Q), hence Corollary 1 allows us to conclude that ζk(un) is compact in L1(Q).

By (10) and (18), we have

||Tk(un)||W 1,x
0 Lϕ (Q)

≤C2.

We show that (un)n is a Cauchy sequence in measure. Indeed, we have

kmeas{|un|> k}=
∫
{|un|>k}

|Tk(un)|dxdt ≤
∫

Q
|Tk(un)|dxdt ≤C3||Tk(un)||W 1,x

0 Lϕ (Q)
,

therefore,

meas{|un|> k} ≤C4,(20)

where C4 is a constant that does not depend on k. Since for all δ > 0,

meas{|un−um|> δ} ≤meas{|un|> k}+meas{|um|> k}+meas{|Tk(un)−Tk(um)|> δ},

using (20), we get that for all ε > 0, there exists k0 > 0 such that

meas{|un|> k} ≤ ε

3
and meas{|um|> k} ≤ ε

3
∀k ≥ k0(ε).(21)
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Since the sequence (Tk(un))n is bounded in W 1,x
0 Lϕ(Q), then there exists a subsequence still

denoted (Tk(un))n such that

Tk(un)⇀ vk in W 1,x
0 Lϕ(Q) as n→ ∞

and by the compact embedding (by a slight adaptation of the context of Theorem 6. of [8]), we

obtain

Tk(un)→ vk in Lϕ(Q) and a.e. inQ.

Therefore, we can assume that (Tk(un))n is a Cauchy sequence in measure in Q, then for all

k > 0 and δ ,ε > 0 there exists n0 = n0(k,δ ,ε) such that

meas{|Tk(un)−Tk(um)|> δ} ≤ ε

3
∀n,m≥ n0.(22)

Combining (21) and (22), we obtain that for all k > 0 and δ ,ε > 0 there exists n0 = n0(k,δ ,ε)

such that

meas{|un−um|> δ} ≤ ε

3
∀n,m≥ n0,

it follows that (un)n is a Cauchy sequence in measure, then there exists a subsequence still

denoted (un)n such that

un→ u a.e. in Q.

We obtain  Tk(un)⇀ Tk(u) weakly in W 1,x
0 Lϕ(Q), for σ(ΠLϕ ,ΠEψ)

Tk(un)→ Tk(u) strongly in Lϕ(Q) and a.e. in Q.
(23)

 Tk(un)⇀ Tk(u) weakly in W 1,x
0 Lϕ(Q), for σ(ΠLϕ ,ΠEψ)

Tk(un)→ Tk(u) strongly in L1(Q) and a.e. in Q.
(24)

To prove that a(x, t,Tk(un),∇Tk(un)) is a bounded sequence in (Lψ(Q))N . Let φ ∈ (Eϕ(Q))N

with ||φ ||ϕ,Q = 1.

In view of (9), we have∫
Q
[a(x, t,Tk(un),∇Tk(un))−a(x, t,Tk(un),φ)][∇Tk(un)−φ ]dxdt ≥ 0,
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which gives ∫
Q

a(x, t,Tk(un),∇Tk(un))φdxdt ≤∫
Q

a(x, t,Tk(un),∇Tk(un))∇Tk(un)dxdt−
∫

Q
a(x, t,Tk(un),φ)[∇Tk(un)−φ ]dxdt.

On the one hand, by (18), we have∫
Q

a(x, t,Tk(un),∇Tk(un))∇Tk(un)dxdt ≤C,

where here and below C denote positive constants not depending on n.

On the other hand, using (8), we see that

ψ(x,
|a(x, t,Tk(un),φ)|

2β (k)
)≤ ψ(x,c1(x, t))+ϕ(x,ϑ |φ |)

and hence a(x, t,Tk(un),φ) is bounded in (Lψ(Q))N , implying that, since Tk(un) is bounded in

W 1,x
0 Lϕ(Q)

|
∫

Q
a(x, t,Tk(un),φ)[∇Tk(un)−φ ]dxdt| ≤C,

and so, by using the dual norm, a(x, t,Tk(un),∇Tk(un)) is a bounded sequence in (Lψ(Q))N .

Thus, up to subsequence

a(x, t,Tk(un),∇Tk(un))⇀ hk in (Lψ(Q))N for σ(ΠLψ ,ΠEϕ),(25)

for some hk ∈ (Lψ(Q))N .

Step 2. Almost everywhere convergence of gradients.

Fix k > 0 and let φ(s) = sexp(δ s2),δ > 0. It is well known that when δ ≥ (b(k)
2α

)2 one has

φ
′(s)− b(k)

α
|φ(s)| ≥ 1

2
for all s ∈ R(26)

Let v j ∈D(Q) be a sequence such that

v j→ u in W 1,x
0 Lϕ(Q) for the modular convergence(27)

and let wi ∈D(Ω) be a sequence which converges strongly to u0 in L2(Ω).

Set ω i
µ, j = Tk(v j)µ +exp(−µt)Tk(wi) where Tk(v j)µ is the mollification with respect to time of

Tk(v j),
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see (6).

Note that ω i
µ, j is a smooth function having the following properties:

∂

∂ t (ω
i
µ, j) = µ(Tk(v j)−ω i

µ, j),ω
i
µ, j(0) = Tk(v j), |ω i

µ, j| ≤ k,

ω i
µ, j→ Tk(u)µ + exp(−µt)Tk(wi) in W 1,x

0 Lϕ(Q) for the modular convergence as j→ ∞,

Tk(u)µ + exp(−µt)Tk(wi)→ Tk(u) in W 1,x
0 Lϕ(Q) for the modular convergence as µ → ∞.

Let now the function ρm defined on R by

ρm(s) =


1 if |s| ≤ m,

m+1−|s| if m≤ |s| ≤ m+1,

0 if |s| ≥ m+1,

where m > k. Let θ
µ,i
n, j −ω i

µ, j and Zµ,i
n, j,m = φ(θ

µ,i
n, j )ρm(un).

Using in (17) the test function Zµ,i
n, j,m, we get(u′n denotes by the distributional time derivative

of un),

〈u′n,Z
µ,i
n, j,m〉+

∫
Q

a(x, t,un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(θ
µ,i
n, j )ρm(un)dxdt

+
∫

Q
a(x, t,un,∇un)φ(θ

µ,i
n, j )ρ

′
m(un)dxdt

+
∫

Q
gn(x, t,un,∇un)Z

µ,i
n, j,mdxdt =

∫
Q

fnZµ,i
n, j,m,

which implies since gn(x, t,un,∇un)φ(Tk(un)−ω i
µ, j)ρm(un)≥ 0 on |un|> k:

〈u′n,Z
µ,i
n, j,m〉+

∫
Q

a(x, t,un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(θ
µ,i
n, j )ρm(un)dxdt

+
∫

Q
a(x, t,un,∇un)φ(θ

µ,i
n, j )ρ

′
m(un)dxdt

+
∫
{|un|≤k}

gn(x, t,un,∇un)φ(Tk(un)−ω
i
µ, j)ρm(un)dxdt ≤

∫
Q

fnZµ,i
n, j,mdxdt(28)

In the sequel and throughout the paper, we will omit for simplicity the dependence on x and t in

the function a(x, t,s,ξ ) and denote ε(n, j,µ, i,s,m) all quantities (possibly different) such that

lim
m→∞

lim
s→∞

lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j,µ, i,s,m) = 0
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and this will be the order in which the parameters we use will tend to infinity, that is, first n,

then j,µ, i,s and finally m. Similarly, we will write only ε(n), or ε(n, j),... to mean that the

limits are made only on the specified parameters.

We will deal with each term of (23). First of all, observe that∫
Q

fnφ(Tk(un)−ω
i
µ, j)ρm(un)dxdt = ε(n, j,µ)(29)

since φ(Tk(un)−ω i
µ, j)ρm(un)⇀ φ(Tk(u)−ω i

µ, j)ρm(u) weakly in L∞(Q) as n→ ∞,

and φ(Tk(u)−ω i
µ, j)ρm(u)→ φ(Tk(u)−Tk(u)µ + exp(−µt)Tk(wi))ρm(u) weakly in L∞(Q) as

j→∞, and finally φ(Tk(u)−Tk(u)µ +exp(−µt)Tk(wi))ρm(u)⇀ 0 weakly in L∞(Q) as µ→∞.

On the one hand, from (17) one deduces that un ∈W 1,x
0 Lϕ(Q) and ∂un

∂ t ∈W−1,xLψ(Q)+L1(Q)

and then, by theorem 1, there exists a smooth function unσ such that,

as σ → 0+,unσ → un in W 1,x
0 Lϕ(Q) and ∂unσ

∂ t →
∂un
∂ t in W−1,xLψ(Q)+L1(Q) for the modular

convergence,φ(Tk(unσ )−ω i
µ, j)ρm(unσ )→ Zµ,i

n, j,m in W 1,x
0 Lϕ(Q) for the modular convergence

and weakly in L∞(Q). This implies

〈u′n,Z
µ,i
n, j,m〉= lim

σ→0+

∫
Q

u′nσ φ(Tk(unσ )−ω
i
µ, j)ρm(unσ )dxdt

= lim
σ→0+

∫
Q
[(Rm(unσ ))

′]φ(Tk(unσ )−ω
i
µ, j)dxdt,

where Rm(s) =
∫ s

0 ρm(η)dη . Hence

〈u′n,Z
µ,i
n, j,m〉= lim

σ→0+
[
∫

Q
(Rm(unσ )−Tk(unσ ))

′
φ(Tk(unσ )−ω

i
µ, j)dxdt

+
∫

Q
(Tk(unσ ))

′
φ(Tk(unσ )−ω

i
µ, j)dxdt]

= lim
σ→0+

([
∫

Q
(Rm(unσ )−Tk(unσ ))φ(Tk(unσ )−ω

i
µ, j)dx]T0

−
∫

Q
(Rm(unσ )−Tk(unσ ))φ

′(Tk(unσ )−ω
i
µ, j)(Tk(unσ )−ω

i
µ, j)
′dxdt

+
∫

Q
(Tk(unσ ))

′
φ(Tk(unσ )−ω

i
µ, j)dxdt)

= lim
σ→0+

{I1(σ)+ I2(σ)+ I3(σ)}.

Observe that for |s| ≤ k we have Rm(s) = Tk(s) = s and for |s|> k we have |Rm(s)| ≥ |Tk(s)| and,

since both Rm(s) and Tk(s) have the same sign of s, we deduce that sign (s)(Rm(s)−Tk(s))≥ 0.
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Consequently

I1(σ) = [
∫
{|unσ |>k}

(Rm(unσ )−Tk(unσ ))φ(Tk(unσ )−ω
i
µ, j)dx]T0

≥−
∫
{|unσ (0)|>k}

(Rm(unσ (0))−Tk(unσ (0)))φ(Tk(unσ (0))−ω
i
µ, j(0))dx

and so, by letting σ → 0+ in the last integral, we get

limsup
σ→0+

I1(σ)≥−
∫
{|u0n|>k}

(Rm(u0n)−Tk(u0n))φ(Tk(u0n)−Tk(wi))dx.

Letting n→ ∞, the right hand side of the above inequality clearly tends to

−
∫
{|u0|>k}

(Rm(u0)−Tk(u0))φ(Tk(u0)−Tk(wi))dx

which obviously goes to 0 as i→ ∞. We deduce the that

limsup
σ→0+

I1(σ)≥ ε(n, i).

About I2(σ), we have, since (Rm(unσ )−Tk(unσ ))(Tk(unσ )
′ = 0

I2(σ) =
∫
{|unσ |>k}

(Rm(unσ )−Tk(unσ ))φ
′(Tk(unσ )−ω

i
µ, j)(ω

i
µ, j)
′dxdt

= µ

∫
{|unσ |>k}

(Rm(unσ )−Tk(unσ ))φ
′(Tk(unσ )−ω

i
µ, j)(Tk(v j)−ω

i
µ, j)dxdt

≥ µ

∫
{|unσ |>k}

(Rm(unσ )−Tk(unσ ))φ
′(Tk(unσ )−ω

i
µ, j)(Tk(v j)−Tk(unσ ))dxdt

by using the fact φ ′ ≥ 0 and that (Rm(unσ )−Tk(unσ ))(Tk(unσ )−ω i
µ, j)χ{|unσ |>k} ≥ 0 and so,by

letting σ → 0+ in the last integral

limsup
σ→0+

I2(σ)≥ µ

∫
{|un|≥k}

(Rm(un)−Tk(un))φ
′(Tk(un)−ω

i
µ, j)(Tk(v j)−Tk(un))dxdt

and since, as it can be easily seen, the last integral is of the form ε(n, j) we deduce that

limsup
σ→0+

I2(σ)≥ ε(n, j).

For what concerns I3(σ), one

I3(σ) =
∫

Q
(Rm(unσ )−ω

i
µ, j)
′
φ(Tk(unσ )−ω

i
µ, j)dxdt

+
∫

Q
(ω i

µ, j)
′
φ(Tk(unσ )−ω

i
µ, j)dxdt
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and then, by setting Φ(s) =
∫ s

0 φ(η)dη and integrating by parts

I3(σ) = [
∫

Ω

Φ(Tk(unσ )−ω
i
µ, j)(t)dx]T0 +µ

∫
Q
(Tk(v j)−ω

i
µ, j)φ(Tk(unσ )−ω

i
µ, j)dxdt,

which implies, since Φ≥ 0 and (Tk(v j)−ω i
µ, j)φ(Tk(unσ )−ω i

µ, j)≥ 0

I3(σ)≥−
∫

Ω

Φ(Tk(unσ (0))−Tk(wi))dx

+µ

∫
Q
(Tk(v j)−Tk(unσ )φ(Tk(unσ )−ω

i
µ, j)dxdt

so that

limsup
σ→0+

I3(σ)≥−
∫

Ω

Φ(Tk(u0n)−Tk(wi))dx

+µ

∫
Q
(Tk(v j)−Tk(un)φ(Tk(un)−ω

i
µ, j)dxdt,

and hence, by letting n→ ∞ in the last side, we obtain

limsup
σ→0+

I3(σ)≥−
∫

Ω

Φ(Tk(u0)−Tk(wi))dx

+µ

∫
Q
(Tk(v j)−Tk(u)φ(Tk(u)−ω

i
µ, j)dxdt + ε(n).

since the first integral of the last side is of the from ε(i) while the second one is of the form ε( j)

we deduce that

limsup
σ→0+

I3(σ)≥ ε(n, j, i).

where we have used the fact that (recall that |ω i
µ, j| ≤ k)∫

Q
Gk(u)φ ′(Tk(u)−ω

i
µ, j)(Tk(u)−ω

i
µ, j)dxdt

=
∫
{u>k}

(u− k)φ ′(k−ω
i
µ, j)(k−ω

i
µ, j)dxdt

+
∫
{u<−k}

(u+ k)φ ′(−k−ω
i
µ, j)(−k−ω

i
µ, j)dxdt ≥ 0.

Combining these estimates, we conclude that

〈u′n,φ(Tk(un)−ω
i
µ, j)ρm(un)〉 ≥ ε(n, j, i).(30)
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On the other hand, the second term of the left hand side of (28) read as

∫
Q

a(un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

=
∫
{|un|≤k}

a(un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

+
∫
{|un|>k}

a(un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

=
∫

Q
a(Tk(un),∇Tk(un))[∇Tk(un)−∇ω

i
µ, j]φ

′(Tk(un)−ω
i
µ, j)dxdt

+
∫
{|un|>k}

a(un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

where we have used the fact that, since m > k,ρm(un) = 1 on {|un| ≤ k}. Setting for s > 0, set

Qs = {(x, t) ∈ Q : |∇Tk(u)| ≤ s} and Qs
j = {(x, t) ∈ Q : |∇Tk(v j)| ≤ s} and denote by χs and χs

j

the characteristic functions of Qs and Qs
j respectively, we deduce that

∫
Q

a(un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

=
∫

Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)][∇Tk(un)−∇Tk(v j)χ

s
j ]×φ

′(Tk(un)−ω
i
µ, j)dxdt

+
∫

Q
a(Tk(un),∇Tk(v j)χ

s
j)[∇Tk(un)−∇Tk(v j)χ

s
j ]φ
′(Tk(un)−ω

i
µ, j)dxdt

+
∫

Q
a(Tk(un),∇Tk(un))∇Tk(v j)χ

s
jφ
′(Tk(un)−ω

i
µ, j)dxdt

−
∫

Q
a(un,∇un)∇ω

i
µ, jφ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

:= J1 + J2 + J3 + J4.

We shall go to the limit as n, j,µ and s→ ∞ in the last three integrals of the last side.

Starting with J2, we have by letting n→ ∞

J2 =
∫

Q
a(Tk(u),∇Tk(v j)χ

s
j)[∇Tk(u)−∇Tk(v j)χ

s
j ]φ
′(Tk(u)−ω

i
µ, j)ρm(u)dxdt + ε(n),

since a(Tk(un),∇Tk(v j)χ
s
j)→ a(Tk(u),∇Tk(v j)χ

s
j) strongly in (Eψ(Q))N by using (8), (27) and

Lebesgue theorem while ∇Tk(un)χ
s
j ⇀ ∇Tk(u)χs strongly in (Lϕ(Q))N .

J2 = ε(n, j).
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About J3(n, j,µ,s),we have by letting n→ ∞ and using (25)

J3 =
∫

Q
hk∇Tk(v j)χ

s
jφ
′(Tk(u)−ω

i
µ, j)ρm(u)dxdt + ε(n)

which gives by letting j→ ∞, thanks to (27) (recall that ρm(u) = 1 on {|u| ≤ k}),

J3 =
∫

Q
hk∇Tk(u)χs

φ
′(Tk(u)−Tk(u)µ − exp(−µt)Tk(wi)dxdt + ε(n, j),

implying that, by letting µ → ∞, J3 =
∫

Q hk∇Tk(u)χsdxdt + ε(n, j,µ), and thus

J3 =
∫

Q
hk∇Tk(u)dxdt + ε(n, j,µ,s).

For what concerns J4 we can write, since ρm(u) = 1 on {|u|> m+1}

J4 =−
∫

Q
a(Tm+1(un),∇Tm+1(un))∇ω

i
µ, jφ

′(Tk(un)−ω
i
µ, j)ρm(un)

=−
∫
{|un|≤k}

a(Tk(un),∇Tk(un))∇ω
i
µ, jφ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

−
∫
{k<|un|≤m+1}

a(Tm+1(un),∇Tm+1(un))∇ω
i
µ, jφ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

and, as above, by letting n→ ∞

J4 =−
∫
{|u|≤k}

hk∇ω
i
µ, jφ

′(Tk(u)−ω
i
µ, j)dxdt

−
∫
{k<|u|≤m+1}

hm+1∇ω
i
µ, jφ

′(Tk(u)−ω
i
µ, j)ρm(u)dxdt + ε(n)

which implies that, by letting j→ ∞

J4 =−
∫
{|u|≤k}

hk[∇Tk(u)µ − exp(−µt)∇Tk(wi)]φ
′(Tk(u)−Tk(u)µ − exp(−µt)∇Tk(wi))dxdt + ε(n, j)

−
∫
{k<|u|≤m+1}

hm+1[∇Tk(u)µ − exp(−µt)∇Tk(wi)]φ
′(Tk(u)−Tk(u)µ − exp(−µt)∇Tk(wi))ρm(u)dxdt

so that, by letting µ → ∞

J4 =−
∫

Q
hk∇Tk(u)dxdt + ε(n, j).

We conclude then that∫
Q

a(un,∇un)[∇Tk(un)−∇ω
i
µ, j]φ

′(Tk(un)−ω
i
µ, j)ρm(un)dxdt

=
∫

Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)][∇Tk(un)−∇Tk(v j)χ

s
j ]

×φ
′(Tk(un)−ω

i
µ, j)dxdt + ε(n, j,µ,s).(31)
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To deal with the third term of the left-hand side of (28), observe that

|
∫

Q
a(x, t,un,∇un)φ(θ

µ,i
n, j )ρ

′
m(un)dxdt |

≤ φ(2k)
∫
{m≤|un|≤m+1}

a(un,∇un)∇undxdt.

On the other hand, using θm(un) as a test function in (17) where θm(s) = T1(s−Tm(s)), we get

〈u′n,θm(un)〉+
∫

Q
a(un,∇un)∇unθ

′
m(un)dxdt +

∫
Q

gn(un,∇un)θm(un)dxdt

=
∫

Q
fnθm(un)dxdt

which gives, by setting Θm(s) =
∫ s

0 θm(η)dη (observe that θm(s)s≥ 0 )

[
∫

Ω

Θm(un(t))dx]T0 +
∫
{m≤|un|≤m+1}

a(un,∇un)∇undxdt ≤
∫
{m≤|un|≤m+1}

| fn|dxdt

and since Θm ≥ 0, we deduce that

∫
{m≤|un|≤m+1}

a(un,∇un)∇undxdt ≤
∫

Ω

Θm(u0n)dx+
∫
{m≤|un|≤m+1}

| fn|dxdt.

Since, as it can be easily seen, each integral of the right hand side is of the form ε(n,m) we

obtain

|
∫

Q
a(x, t,un,∇un)φ(θ

µ,i
n, j )ρ

′
m(un)dxdt| ≤ ε(n,m).(32)

We now turn to the fourth term of the left hand side of (28). We can write

|
∫
{|un|≤k}

gn(x, t,un,∇un)φ(Tk(un)−ω
i
µ, j)ρm(un)|dxdt

≤ b(k)
∫

Q
c2(x, t)|φ(Tk(un)−ω

i
µ, j)|dxdt

+
b(k)

α

∫
Q

a(Tk(un),∇Tk(un)|φ(Tk(un)−ω
i
µ, j)|dxdt.(33)

Since c2(x, t) belongs to L1(Q) it is easy to see that

b(k)
∫

Q
c2(x, t)|φ(Tk(un)−ω

i
µ, j)|dxdt = ε(n, j,µ).
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On the other hand, the second term of the right hand side of (33) reads as

b(k)
α

∫
Q

a(Tk(un),∇Tk(un))∇Tk(un)|φ(Tk(un)−ω
i
µ, j)|dxdt

=
b(k)

α

∫
Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)][∇Tk(un)−∇Tk(v j)χ

s
j ]|φ(Tk(un)−ω

i
µ, j)|dxdt

+
b(k)

α

∫
Q

a(Tk(un),∇Tk(v j)χ
s
j)[∇Tk(un)−∇Tk(v j)χ

s
j ]|φ(Tk(un)−ω

i
µ, j)|dxdt

+
b(k)

α

∫
Q

a(Tk(un),∇Tk(un))∇Tk(v j)χ
s
j)|φ(Tk(un)−ω

i
µ, j)|dxdt

and, as above, by letting successively first n, then j,µ and finally s go to infinity, we can easily

see that each one of last two integrals of the right-hand side of the last equality is of the form

ε(n, j,µ). This implies that

|
∫
{|un|≤k}

gn(x, t,un,∇un)φ(Tk(un)−ω
i
µ, j)ρm(un)dxdt |

≤ b(k)
α

∫
Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)]

×[∇Tk(un)−∇Tk(v j)χ
s
j ]|φ(Tk(un)−ω

i
µ, j)|dxdt + ε(n, j,µ).(34)

Combining (28),(29),(30),(31),(32) and (34), we get∫
Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)][∇Tk(un)−∇Tk(v j)χ

s
j ]

×[φ ′(Tk(un)−ω
i
µ, j)−

b(k)
α
|φ(Tk(un)−ω

i
µ, j)|]dxdt ≤ ε(n, j,µ, i,s,m).

and so, thanks to (26), ∫
Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)]

×[∇Tk(un)−∇Tk(v j)χ
s
j ]dxdt ≤ 2ε(n, j,µ, i,s,m).(35)

On the other hand, we have∫
Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]dxdt

−
∫

Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)][∇Tk(un)−∇Tk(v j)χ

s
j ]dxdt

=
∫

Q
a(Tk(un),∇Tk(un))[∇Tk(v j)χ

s
j −∇Tk(u)χs]dxdt

−
∫

Q
a(Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]dxdt
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+
∫

Q
a(Tk(un),∇Tk(v j)χ

s
j)[∇Tk(un)−∇Tk(v j)χ

s
j ]dxdt

and, as it can be easily seen, each integral of the right-hand side is of the form ε(n, j,s), implying

that

∫
Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]dxdt

=
∫

Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)]

×[∇Tk(un)−∇Tk(v j)χ
s
j ]dxdt + ε(n, j,s).(36)

For r ≤ s, we have

0≤
∫

Qr
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]dxdt

≤
∫

Qs
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]dxdt

=
∫

Qs
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]dxdt

≤
∫

Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]dxdt

=
∫

Q
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(v j)χ

s
j)][∇Tk(un)−∇Tk(u)χs

j ]dxdt + ε(n, j,s)

≤ ε(n, j,µ, i,s,m),

hence, by passing to the limit sup over n, we get

0≤ limsup
n→∞

∫
Qr
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]dxdt

≤ limsup
n→∞

ε(n, j,µ, i,s,m),

in which we let successively j→ ∞,µ →, i→ ∞,s→ ∞, and m→ ∞, to obtain

∫
Qr
[a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]dxdt→ 0 as n→ ∞

and thus, as in the elliptic case(see [4]), there exists a subsequence also denote by un such that

∇un→ ∇u a.e. inQ.(37)
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We deduce then that, for all k > 0

a(x, t,Tk(un),∇Tk(un))⇀ a(x, t,Tk(u),∇Tk(u))

weakly in (Lψ(Q))N for σ(ΠLψ ,ΠEϕ)(38)

Step 3. Modular convergence of the truncations and equi-integrability of the nonlinearities.

Thanks to (33) and (36), we can write∫
Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt

≤
∫

Q
a(Tk(un),∇Tk(un))∇Tk(u)χsdxdt

+
∫

Q
a(Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]dxdt

+ε(n, j,µ, i,s,m),

and then

limsup
n→∞

∫
Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt

≤
∫

Q
a(Tk(u),∇Tk(u))∇Tk(u)χsdxdt

+
∫

Q
a(Tk(un),∇Tk(u)χs)[1−χ

s]dxdt

+ lim
n→∞

ε(n, j,µ, i,s,m),

in which we can pass to the limit as j,µ, i,s,m→ ∞ to obtain

limsup
n→∞

∫
Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt ≤
∫

Q
a(Tk(u),∇Tk(u))∇Tk(u)dxdt.

On the other hand, Fatou’s lemma implies∫
Q

a(Tk(u),∇Tk(u))∇Tk(u)dxdt ≤ liminf
n→∞

∫
Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt,

and thus, as n→ ∞,∫
Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt→
∫

Q
a(Tk(u),∇Tk(u))∇Tk(u)dxdt.

Since a(Tk(un),∇Tk(un))∇Tk(un)≥ d(x, t) ∈ L1(Q) we deduce that

a(Tk(un),∇Tk(un))∇Tk(un)dxdt→ a(Tk(u),∇Tk(u))∇Tk(u)dxdt in L1(Q),(39)



32 M. L. AHMED OUBEID, M. SIDI EL VALLY

as n→ ∞; implying by using (11) and Vitali’s theorem that

∇Tk(un)→ ∇Tk(u) in (Lϕ(Q))N for the modular convergence .

We shall now prove that gn(x, t,un,∇un)→ g(x, t,un,∇un) strongly in L1(Q) by using Vitli’s

theorem. Since gn(x,un,∇un)→ g(x,un,∇un) a.e. in Q, thanks to (24)and (30), it suffices to

prove that gn(x, t,un,∇un) are uniformly equi-integrable in Q.

Let E ⊂ Q be a measurable subset of Q. We have for any m > 0:

∫
E
|gn(x, t,un,∇un)|dxdt =

∫
E∩{|un|≤m}

|gn(x, t,un,∇un)|dxdt +
∫

E∩{|un|>m}
|gn(x, t,un,∇un)|dxdt.

≤ b(m)

α

∫
E

a(Tm(un),∇Tm(un))∇Tm(un)dxdt +b(m)
∫

E
[c2(x, t)+

1
α

d(x, t)]dxdt

+
∫
{|un|>m}

| fn|dxdt +
∫
{|u0n|>m}

|u0n|dxdt,

where we have used (12) and (19). Therefore, it is easy to see that there exists ν such that

|E|< ν ⇒
∫

E
|gn(x, t,un,∇un)|dxdt ≤ ε∀n,

which shows that gn(x, t,un,∇un) are uniformly equi-integrable in Q as required.

Step 4. Passage to the limit and regularity of the solution.

Let v ∈W 1,x
0 Lϕ(Q)∩L∞(Q) such that ∂v

∂ t ∈W−1,xLψ(Q)+L1(Q). There exists a prolongation

v̄ of v such that (see proof of Lemma 1)

v̄ = v on Q, v̄ ∈W 1,x
0 Lϕ(Ω×R)∩L2(Ω×R)∩L∞(Ω×R),

and

∂ v̄
∂ t

= v ∈W−1,xLψ(Ω×R)+L2(Ω×R).(40)

By Theorem1(see also Remark 1), there exists a sequence (w j ⊂D(Ω×R)) such that

w j→ v̄ in W 1,x
0 Lϕ(Ω×R)∩L2(Ω×R),

and

∂w j

∂ t
→ ∂ v̄

∂ t
in W−1,xLψ(Ω×R)+L2(Ω×R),(41)
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for the modular convergence and ||w j||∞,Ω×R ≤ (N +2)||v̄||∞,Ω×R.

Go back to approximate equations (17) and use Tk(un−w j)χ(0,τ), for every τ ∈ [0,T ](which

belongs to W 1,x
0 Lϕ(Q)) as a test function one has

〈u′n,Tk(un−w j)〉Qτ
+
∫

Qτ

a(Tk(un),∇Tk(un))∇Tk(un−w j)dxdt

+
∫

Qτ

gn(x, t,un,∇un)Tk(un−w j)dxdt =
∫

Qτ

fnTk(un−w j)dxdt,(42)

where k = k+C||v||∞,Q.

The second term of the left hand side of (42) reads as∫
Qτ

a(Tk(un),∇Tk(un))∇Tk(un−w j)dxdt

=
∫

Qτ∩{|un−w j|≤k}
a(Tk(un),∇Tk(un))∇undxdt

−
∫

Qτ∩{|un−w j|≤k}
a(Tk(un),∇Tk(un))∇w jdxdt

and by using Fatou’s lemma in the first integral of the last side and (38) in the second one, we

deduce that ∫
Qτ

a(Tk(u),∇Tk(u))∇Tk(u−w j)dxdt

≤ liminf
0→∞

∫
Qτ

a(Tk(un),∇Tk(un))∇Tk(un−w j)dxdt.

Since ∇Tk(un−w j)→ ∇Tk(u−w j) weakly in L∞(Q) as n→ ∞, we have (as n→ ∞)∫
Qτ

gn(un,∇un)Tk(un−w j)dxdt→
∫

Qτ

g(u,∇u)Tk(u−w j)dxdt and∫
Qτ

fnTk(un−w j)dxdt→
∫

Qτ

f Tk(u−w j)dxdt.

For what concerns the first term of (42), we have, by setting Sk(s) =
∫ s

0 Tk(η)dη

〈u′n,Tk(un−w j)〉Qτ
= 〈u′n−w′j,Tk(un−w j)〉Qτ

+ 〈w′j,Tk(un−w j)〉Qτ

=
∫

Ω

Sk(un−w j)(τ)dx−
∫

Ω

Sk(u0n−w j(0))dx+
∫

Qτ

∂w j

∂ t
Tk(un−w j)dxdt,(43)

and, in order to pass to the limit (as n → ∞) in (43), we will first prove that un → u in

C ([0,T ],L1(Ω)) (implying, in particular, that u ∈ C ([0,T ],L1(Ω))).

Let now, for every l > 0 ω
i,l
j,µ = Tl(v j)µ +exp(−µt)Tl(wi) and ω

i,l
µ = Tl(u)µ +exp(−µt)Tl(wi),
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where vl
j ∈ D(Q) is a sequence such that: vl

j → Tl(u) in W 1,x
0 Lϕ(Q) for the modular conver-

gence as j→ ∞ .

We have for every τ ∈ (0,T ]

〈(ω i,l
j,µ)
′,Tk(un−ω

i,l
j,µ)〉Qτ

= µ

∫
Qτ

(Tl(v j)−ω
i,l
j,µ)Tk(un−ω

i,l
j,µ)dxdt

→ µ

∫
Qτ

(Tl(v j)−ω
i,l
j,µ)Tk(un−ω

i,l
j,µ)dxdt

→ µ

∫
Qτ

(Tl(u)−ω
i,l
j,µ)Tk(un−ω

i,l
j,µ)dxdt ≥ 0,(44)

as first n→ ∞ and then j→ ∞ and where we have used the fact that |ω i,l
µ | ≤ l to get the posi-

tiveness of last integral.

On the other hand, by using (17)

〈u′n,Tk(un−ω
i,l
j,µ)〉Qτ

=
∫

Q
a(x, t,un,∇un)[∇ω

i,l
j,µ −∇un]χ{|un−ω

i,l
j,µ |≤k}dxdt

+
∫

Qτ

gn(x, t,un,∇un)Tk(ω
i,l
j,µ −un)dxdt

+
∫

Qτ

fnTk(un−ω
i,l
j,µ)dxdt,

in which we can use Fatou’s lemma and Lebesgue theorem to pass to the limit sup first over n

and then over j,µ, l, to get, for every k > 0,

〈u′n,Tk(un−ω
i,l
j,µ)〉Qτ

≤ ε(n, j,µ, l) not depending on τ.(45)

Therefore, by writing

∫
Ω

Sk(un(τ)−ω
i,l
j,µ(τ))dx = 〈u′n− (ω i,l

j,µ)
′,Tk(un−ω

i,l
j,µ)〉Qτ

+
∫

Ω

Sk(u0−Tl(wi))dx

= 〈u′n,Tk(un−ω
i,l
j,µ)〉Qτ

−〈(ω i,l
j,µ)
′,Tk(un−ω

i,l
j,µ)〉Qτ

+
∫

Ω

Sk(u0−Tl(wi))dx

and using (44) and (45), we see that, for every fixed k > 0,∫
Ω

Sk(un(τ)−ω
i,l
j,µ(τ))dx≤ ε(n, j,µ, l, i) not depending on τ

which implies, by writing (recall that Sk is a convex function )

∫
Ω

Sk[
1
2
(un(τ)−um(τ))]dx≤

∫
Ω

Sk(un(τ)−ω
i,l
j,µ(τ))dx+

∫
Ω

Sk(um(τ)−ω
i,l
j,µ(τ))dx,
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that ∫
Ω

Sk[
1
2
(un(τ)−um(τ))]dx≤ ε1(n,m),

where εi(n,m)(i = 1,2) is a term not depending on τ and which tends to 0 as n and m go to

infinity.

We deduce then that (see for instance, the proof of Theorem 1.1 of [25]),∫
Ω
|un(τ)−um(τ))|dx≤ ε2(n,m) not depending on τ

and thus,un is a Cauchy sequence in C([0,T ],L1(Ω))(the space of continuous functions from

[0,T ] into L1(Ω) equipped with topology of uniform convergence).

Since the limit of un in L1(Q) is u, we have

un→ u in C([0,T ],L1(Ω)).

Moreover, since Sk(un−w j)(τ)≤ k|un(τ)|+ k|w j(τ)|, we have by using Lebesgue theorem∫
Ω

Sk(un−w j)(τ)dx→
∫

Ω

Sk(u−w j)(τ)dx as n→ ∞

therefore we can pass to the limit in n in each term of the right hand side of (43) to get

lim
n→∞
〈u′n,Tk(un−w j)〉Qτ

=
∫

Ω

Sk(u−w j)(τ)dx−
∫

Ω

Sk(u0−w j(0))dx+
∫

Qτ

∂w j

∂ t
Tk(u−w j)dxdt

and thus, by passing to the limit inf over n in (42), we have∫
Ω

Sk(u−w j)(τ)dx+
∫

Qτ

∂w j

∂ t
Tk(u−w j)dxdt

+
∫

Qτ

a(u,∇u)∇Tk(u−w j)dxdt +
∫

Qτ

g(u,∇u)Tk(u−w j)dxdt

≤
∫

Qτ

f Tk(u−w j)dxdt +
∫

Ω

Sk(u0−w j(0))dx.(46)

To go to the limit in (46) as j→ ∞, observe that, thanks to (41), we have∫
Qτ

∂w j

∂ t
Tk(u−w j)dxdt→ 〈∂v

∂ t
,Tk(u− v)〉Qτ

.

Moreover, for every τ ∈ [0,T ]∫
Ω

S1(wi−w j)(τ)dx =
∫

Ω

∫ 0

−∞

T1(wi−w j)(
∂wi

∂ t
−

∂w j

∂ t
)dxdt→ 0 as i, j→ ∞,
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implying, as above, that ||wi(τ)−w j(τ)||L1(Ω)→ 0 as i, j→∞ and so ||w j(τ)−v(τ)||L1(Ω)→ 0

as j→ ∞.

Therefore, we can go to the limit, as j→ ∞, in each integral of (46), to get∫
Ω

Sk(u− v)(τ)dx+ 〈∂v
∂ t

,Tk(u− v)〉Qτ

+
∫

Qτ

a(u,∇u)∇Tk(u− v)dxdt +
∫

Qτ

g(u,∇u)Tk(u− v)dxdt

≤
∫

Qτ

f Tk(u− v)dxdt +
∫

Ω

Sk(u0− v(0))dx,

where for the first and last integrals, we have used the fact that Sk(u−w j)(τ) ≤ Sk(u(τ))+

k|w j(τ)|, and thus, u is an entropy solution of (15).This completes the proof of theorem 3.
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