
Available online at http://scik.org

J. Math. Comput. Sci. 2025, 15:3

https://doi.org/10.28919/jmcs/8991

ISSN: 1927-5307

DISCRETE DYNAMICS OF AN EPIDEMIC MODEL INCORPORATING
A CONTROL STRATEGY

HARKARAN SINGH1,∗, JOYDIP DHAR2, GOVIND PRASAD SAHU3, RANDHIR SINGH BAGHEL4

1Department of Construction, Melbourne Polytechnic, Heidelberg West, Victoria-3081, Australia

2Department of Applied Sciences, ABV - Indian Institute of Information Technology and Management, Gwalior,

MP-474015, India

3Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India

4Department of Mathematics, Poornima University, Jaipur, Rajasthan-303905, India

Copyright © 2025 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. This paper proposes an epidemic model that incorporates media awareness and analyses the stability

and bifurcation of the discrete-time system. It has been found that while the coefficient of media awareness m has

no effect on R0, it has a considerable impact on the infectious population portion. The centre manifold theorem and

bifurcation theory have been used to investigate the existence of flip bifurcation and Hopf bifurcation in the interior

of R2
+. Numerical simulations have been provided to support analytical findings. Hopf bifurcation is characterised

by a smooth invariant circle that emerges from the fixed point, while flip bifurcation is characterised by a cascade of

periodic doubling bifurcation in orbits of period-2, 4, 8, and chaotic orbits. The calculation of Lyapunov exponents

validates the complexity of dynamical behaviour.
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1. INTRODUCTION

The study of epidemic propagation has become a focal point for both mathematicians and bi-

ologists. With one million individuals crossing international borders every day, the rapid spread

of communicable diseases poses a significant threat to global health [1]. Health officials have

a toolkit of pharmaceutical and non-pharmaceutical strategies at their disposal, including mask

mandates, school closures, isolation of the infected, and encouraging people to stay home [2].

Crucially, the media plays an essential role in improving public understanding of these non-

pharmaceutical interventions (NPIs), which are vital for effective epidemic management. Yet,

many researchers have modeled epidemics without factoring in the influence of media aware-

ness on public behavior and health outcomes [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Only a small

number of studies have examined how media awareness can effectively assist in managing in-

fectious diseases [13, 14, 15, 16, 17]. Moreover, some researchers argue that discrete-time

models are better suited for capturing the complexities of epidemic dynamics and yielding ac-

tionable insights [18, 19, 20, 21, 22, 23]. Understanding this interplay between media awareness

and epidemic management is crucial for public health initiatives and can enhance our ability to

respond effectively in future outbreaks.

In the current study, an epidemic model with a control strategy is proposed and analysed using

the stability theory of ordinary differential equations. The structure of this paper is as follows:

An epidemic model that incorporates media awareness is described in section 2. Section 3

discusses the fixed points and stability conditions of the discrete-time system. Section 4 uses

bifurcation theory to discuss the existence conditions for flip bifurcation and Hopf bifurcation

in the discrete-time domain. In section 5, some numerical simulations were provided to back

up our analytical solutions. Finally, conclusions are provided in section 6.

2. FORMULATION OF MATHEMATICAL MODEL

Under the following presumptions, we put forth an epidemic model that takes media aware-

ness into account as a control measure:

(i) The population Ñ(t̃) is divided into various mutually exclusive compartments, namely,

susceptible(S̃), infected(Ĩ) and recovered(R̃).
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(ii) Newborn join to susceptible class with a fixed recruitment rate Λ

(iii) The natural death rate is µ̃ .

(iv) Media induced effective transmission rate is proposed as β (Ĩ) = βe−
mĨ
Ñ .

(v) Recovered individuals develop disease-acquired temporary immunity that wanes at rate θ .

The following is the structure of the suggested epidemic system:

dS̃
dt̃

= Λ− β̃e−m Ĩ
Ñ

S̃Ĩ
Ñ

+ θ̃ R̃− µ̃ S̃,(1)

dĨ
dt̃

= β̃e−m Ĩ
Ñ

S̃Ĩ
Ñ
− µ̃ Ĩ− δ̃ Ĩ− γ̃ Ĩ,(2)

dR̃
dt̃

= γ̃ Ĩ− θ̃ R̃− µ̃R̃,(3)

with preliminary settings:

(4) S̃(0) = S̃0 > 0, Ĩ(0) = Ĩ0 > 0, R̃(0) = R̃0 > 0

with Table 1 listing the parameters of the suggested system.

Further Ñ(t̃) = S̃(t̃)+ Ĩ(t̃)+ R̃(t̃). So

dÑ
dt̃

= Λ− µ̃Ñ− δ̃ Ĩ.(5)

TABLE 1. An explanation of the system’s parameters (1)-(4)

The parameter Summary Unit

Λ Rate of recruitment days−1

δ̃ Rate of disease-induced mortality days−1

1/µ̃ Mean lifespan days

β̃ Contact rate (via media awareness in the

absence of NPIs)

days−1

m Media awareness coefficient -

1/γ̃ Average duration of infection days

1/θ̃ Average duration of disease-induced im-

mune decline

days
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The aforementioned system is non-dimensionalized using

S =
S̃
Ñ
, I =

Ĩ
Ñ
,R =

R̃
Ñ
,N =

Ñ
Ñ0

, Ñ0 =
Λ

µ̃
, t = µ̃ t̃.

Equations that have been rescaled are

dS
dt

=
1
N
−βe−mISI +θR− S

N
+δSI,(6)

dI
dt

= βe−mISI−δ I− γI− I
N
+δ I2,(7)

dR
dt

= γI−θR− R
N
+δRI,(8)

dN
dt

= 1−N−δNI,(9)

where

β =
β̃

µ̃
,θ =

θ̃

µ̃
,γ =

γ̃

µ̃
,δ =

δ̃

µ̃

and under the preliminary circumstances:

(10) S(0) = S0 > 0, I(0) = I0 > 0,R(0) = R0 > 0,N(0) = N0 > 0.

At the steady state, or the limiting case, dN
dt = 0, which suggests max N = 1. As a result, the

equation system (6)-(9) reductions to

dS
dt

= 1−βe−mISI +θR−S+δSI,(11)

dI
dt

= βe−mISI−δ I− γI− I +δ I2,(12)

dR
dt

= γI−θR−R+δRI.(13)

Here, maxN = 1 and S+ I +R = N. When S+ I +R = 1 is the limiting situation, the system

of equations (11)-(13) further reduces to

dS
dt

= 1−βe−mISI +θ(1−S− I)−S+δSI,(14)

dI
dt

= βe−mISI−δ I− γI− I +δ I2.(15)

For the non-dimensional system, the biologically viable zone is

Ω = {(S, I) : 0≤ S, I ≤ 1} .
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The disease-free equilibrium of the system (14)-(15) is A = (1,0). The basic reproduction

number R0 is now determined. Let x = (S, I). Consequently

dx
dt

= f −ν ,

where

f =

 −βe−mISI +δSI

βe−mISI +δ I2


and

v =

 −1−θ(1−S− I)+S

δ I + γI + I

 .

We have

F = D f |A =

 0 −β +δ

0 β


and

V = Dν |A =

 θ +1 θ

0 δ + γ +1

 .

The model’s next generation matrix is provided by

K = FV−1 =

 0 −β+δ

δ+γ+1

0 β

δ+γ+1

 .

The formula R0 = ρ(FV−1) establishes the basic reproduction number. Consequently,

R0 =
β

δ + γ +1
.

Remark: Figure 1 and Figure 2 illustrate the impact of m on the infectious population fraction

for varying values of m. When β̃ = 0.075 and R0 = 0.9375 < 1, we found that the media

coefficient m has a considerable impact on the fraction of infectious population (see Figure 1).

Further, when β̃ = 0.1 and R0 = 1.25 > 1, the media coefficient m has a considerable impact on

the fraction of infectious population (see Figure 2).
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FIGURE 1. Effect of m on I for parameteric values β̃ = 0.075, θ̃ = 0.01, γ̃ = 0.05, δ̃ =

0.01, µ̃ = 0.02, R0 = 0.9375 < 1.
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FIGURE 2. Effect of m on I for parameteric values β̃ = 0.1, θ̃ = 0.01, γ̃ = 0.05, δ̃ =

0.01, µ̃ = 0.02, R0 = 1.25 > 1.

3. DISCRETE DYNAMICAL BEHAVIOR OF THE SYSTEM

The following discrete-time system is obtained by applying forward Euler’s method to the

system of equations (14)-(15):

S → S+h
[
1−βe−mISI +θ(1−S− I)−S+δSI

]
,(16)

I → I +h
[
βe−mISI−δ I− γI− I +δ I2] .(17)

where the step size is denoted by h. Euler’s method will produce numerical solutions that are

closer to the actual solution when the step size is reduced. With step size h and total number

of steps M, the numerical solution to the initial-value problem derived from Euler’s technique

satisfies 0 < h≤ L
M , where L is the interval length.
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The fixed points of the system (16)-(17) are A(1,0) and B(S∗, I∗), where I∗,S∗ satisfy

1−βe−mISI +θ(1−S− I)−S+δSI = 0,(18)

βe−mIS−δ − γ−1+δ I = 0.(19)

The jacobian matrix of system of equations (16)-(17) at the fixed point (S, I) is given by

J =

 1+ha hb

hc 1+hd

 ,
where

a =−βe−mII−θ −1+δ I,

b =−βe−mIS+βme−mISI−θ +δS,

c = βe−mII,

d = βe−mIS−βme−mISI−δ − γ−1+2δ I.

The characteristic equation of the jacobian matrix at the fixed point (S, I) can be written as:

(20) λ
2 + p(S, I)λ +q(S, I) = 0,

where

p(S, I) =−trJ =−2−h(a+d),

q(S, I) = detJ = 1+h(a+d)+h2(ad−bc).

Now, we state a Lemma as similar as in [24, 25, 26, 27]:

Lemma 1. Let F (λ ) = λ 2+Pλ +Q. Suppose that F (1)> 0; λ1 and λ2 are roots of F (λ ) = 0.

Then, we have:

(i) |λ1|< 1 and |λ2|< 1 if and only if F (−1)> 0 and Q < 1;

(ii) |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1) if and only if F (−1)< 0;

(iii) |λ1|> 1 and |λ2|> 1 if and only if F (−1)> 0 and Q > 1;

(iv) λ1 =−1 and |λ2| 6= 1 if and only if F (−1) = 0 and P 6= 0, 2;

(v) λ1 and λ2 are complex and |λ1|= |λ2|= 1 if and only if P2−4Q < 0 and Q = 1.



8 HARKARAN SINGH, JOYDIP DHAR, GOVIND PRASAD SAHU, RANDHIR SINGH BAGHEL

Let λ1 and λ2 be the roots of (20), which are known as eigen values of the fixed point (S, I).

The fixed point (S, I) is a sink or locally asymptotically stable if |λ1| < 1 and |λ2| < 1. The

fixed point (S, I) is a source or locally unstable if |λ1| > 1 and |λ2| > 1. The fixed point (S, I)

is non-hyperbolic if either |λ1|= 1 or |λ2|= 1. The fixed point (S, I) is a saddle if |λ1|> 1 and

|λ2|< 1 (or |λ1|< 1 and |λ2|> 1).

Proposition 2. There exist different topological types of A(1,0) for possible parameters.

(i) A(1,0) is sink if 1+ γ +δ > β and 0 < h < min
{

2
1+θ

, 2
1+γ+δ−β

}
.

(ii) A(1,0) is source if 1+ γ +δ > β and h > max
{

2
1+θ

, 2
1+γ+δ−β

}
.

(iii) A(1,0) is non-hyperbolic if h = 2
1+θ

or h = 2
1+γ+δ−β

and 1+ γ +δ > β .

(iv) A(1,0) is saddle for all values of the parameters, except for that values which lies in

(i) to (iii).

The term (iii) of proposition 2 implies that the parameters lie in the set

FA = {(β ,m,θ ,γ,δ ,h) , h = 2
1+θ

, h 6= 2
1+γ+δ−β

,

1+ γ +δ > β and β ,m,θ ,γ,δ ,h > 0}.

If the term (iii) of proposition 2 holds, then one of the eigen values of the fixed point A(1,0)

is -1 and magnitude of the other is not equal to 1. The point A(1,0) undergoes flip bifurcation

when the parameter changes in limited neighborhood of FA.

The characteristic equation of the jacobian matrix J of the system (16)-(17) at the fixed point

B(S∗, I∗) can be written as

(21) λ
2 + p(S∗, I∗)λ +q(S∗, I∗) = 0,

where

p(S∗, I∗) =−2−Gh,

q(S∗, I∗) = 1+Gh+Hh2,

G = −βe−mI∗I∗−θ −1+δ I∗+βe−mI∗S∗

−βme−mI∗S∗I∗−δ − γ−1+2δ I∗,
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H =
[
−βe−mI∗I∗−θ −1+δ I∗

]
×
[
βe−mI∗S∗−βme−mI∗S∗I∗−δ − γ−1+2δ I∗

]
−βe−mI∗I∗[−βe−mI∗S∗+βme−mI∗S∗I∗−θ +δS∗].

Now

F(λ ) = λ
2− (2+Gh)λ +(1+Gh+Hh2).

Therefore

F(1) = Hh2, F(−1) = 4+2Gh+Hh2.

Using Lemma 1, we get the following proposition:

Proposition 3. There exist different topological types of B(S∗, I∗) for all possible parameters.

(i) B(S∗, I∗) is sink if either condition (i.1) or (i.2) holds:

(i.1) G2−4H ≥ 0 and 0 < h < −G−
√

G2−4H
H ,

(i.2) G2−4H < 0 and 0 < h <−G
H .

(ii) B(S∗, I∗) is source if either condition (ii.1) or (ii.2) holds:

(ii.1) G2−4H ≥ 0 and h > −G+
√

G2−4H
H ,

(ii.2) G2−4H < 0 and h >−G
H .

(iii) B(S∗, I∗) is non-hyperbolic if either condition (iii.1) or (iii.2) holds:

(iii.1) G2−4H ≥ 0 and h = −G±
√

G2−4H
H ,

(iii.2) G2−4H < 0 and h =−G
H .

(iv) B(S∗, I∗) is saddle for all values of the parameters, except for that values which lies in

(i) to (iii).

If the term (iii.1) of proposition 3 holds, then one of the eigen values of the fixed point

B(S∗, I∗) is -1 and magnitude of the other is not equal to 1. The term (iii.1) of proposition 3

may be written as follows:

FB1 = {(β ,m,θ ,γ,δ ,h) : h = −G−
√

G2−4H
H , G2−4H ≥ 0 and

β ,m,θ ,γ,δ ,h > 0},

FB2 = {(β ,m,θ ,γ,δ ,h) : h = −G+
√

G2−4H
H , G2−4H ≥ 0 and

β ,m,θ ,γ,δ ,h > 0}.
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If the term (iii.2) of proposition 3 holds, then the eigen values of the fixed point B(S∗, I∗) are

a pair of conjugate complex numbers with modulus 1. The term (iii.2) of proposition 3 may be

written as follows:

HB = {(β ,m,θ ,γ,δ ,h) : h =−G
H ,G2−4H < 0 and

β ,m,θ ,γ,δ ,h > 0},

where

β =
β̃

µ̃
,θ =

θ̃

µ̃
,γ =

γ̃

µ̃
,δ =

δ̃

µ̃
.

4. BIFURCATION BEHAVIOR

In this section, the flip bifurcation and Hopf bifurcation of the system (16)-(17) is studied at

the fixed point B(S∗, I∗).

4.1. Flip Bifurcation. Consider the system (16)-(17) with arbitrary parameter

(β̃ ,m, θ̃ , γ̃, δ̃ , µ̃,h1) ∈ FB1, which is described as follows:

S → S+h1
[
1−βe−mISI +θ(1−S− I)−S+δSI

]
,(22)

I → I +h1
[
βe−mISI−δ I− γI− I +δ I2] .(23)

System of equations (22)-(23) has fixed point B(S∗, I∗), where S∗, I∗ satisfy (18)-(19) and

h1 =
−G−

√
G2−4H

H
.

The eigen values of B(S∗, I∗) are λ1 =−1, λ2 = 3+Gh1 with |λ2| 6= 1 by proposition 3.

Consider the perturbation of (22)-(23) as below:

S → S+(h1 +h∗)
[
1−βe−mISI +θ(1−S− I)−S+δSI

]
,(24)

I → I +(h1 +h∗)
[
βe−mISI−δ I− γI− I +δ I2] ,(25)

where |h∗| � 1 is a limited perturbation parameter.

Let u = S−S∗ and v = I− I∗.
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After transformation of the fixed point B(S∗, I∗) of map (24)-(25) to the point (0,0), we

obtain

(26)

 u

v

→


a11u+a12v+a13uv+a14v2 +b11h∗u+b12h∗v

+b13h∗uv+b14h∗v2 +O(|u| , |v| , |h∗|)3

a21u+a22v+a23uv+a24v2 +b21h∗u+b22h∗v

+b23h∗uv+b24h∗v2 +O(|u| , |v| , |h∗|)3

 ,

where

a11 = 1− h1

S∗
(1+θ −θ I∗) ,

a12 = h1

[
m(1+θ −θS∗−θ I∗−S∗+δS∗I∗)− 1

I∗
(1+θ −θS∗−S∗)

]
,

a13 = h1

[
m
S∗

(1+θ −θS∗−θ I∗−S∗+δS∗I∗)− 1
S∗I∗

(1+θ −θS∗−θ I∗−S∗)
]
,

a14 = h1

(
m
I∗
− m2

2

)
(1+θ −θS∗−θ I∗−S∗+δS∗I∗),

b11 =−
1
S∗

(1+θ −θ I∗) ,

b12 =

[
m(1+θ −θS∗−θ I∗−S∗+δS∗I∗)− 1

I∗
(1+θ −θS∗−S∗)

]
,

b13 =

[
m
S∗

(1+θ −θS∗−θ I∗−S∗+δS∗I∗)− 1
S∗I∗

(1+θ −θS∗−θ I∗−S∗)
]
,

b14 =

(
m
I∗
− m2

2

)
(1+θ −θS∗−θ I∗−S∗+δS∗I∗),

(27) a21 =
h1

S∗

(
I∗+ γI∗+δ I∗−δ I∗2

)
,

a22 = 1+h1δ I∗−mh1(I∗+ γI∗+δ I∗−δ I∗2),

a23 =
h1

S∗

(
1
I∗
−m

)
(I∗+ γI∗+δ I∗−δ I∗2),

a24 = h1δ +h1m
(

m
2
− 1

I∗

)
(I∗+ γI∗+δ I∗−δ I∗2),

b21 =
1
S∗

(
I∗+ γI∗+δ I∗−δ I∗2

)
,

b22 = δ I∗−m(I∗+ γI∗+δ I∗−δ I∗2),

b23 =
1
S∗

(
1
I∗
−m

)
(I∗+ γI∗+δ I∗−δ I∗2),
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b24 = δ +m
(

m
2
− 1

I∗

)
(I∗+ γI∗+δ I∗−δ I∗2).

Consider the following translation: u

v

= T

 S̄

Ī

 ,

where

T =

 a12 a12

−1−a11 λ2−a11

 .

Taking T−1 on both sides of equation (26), we get

(28)

 S̄

Ī

→
 −1 0

0 λ2

 S̄

Ī

+

 f (u,v,h∗)

g(u,v,h∗)

 ,

where
f (u,v,h∗) = [a13(λ2−a11)−a12a23]uv

a12(λ2+1) + [a14(λ2−a11)−a12a24]v2

a12(λ2+1)

+ [b11(λ2−a11)−a12b21]h∗u
a12(λ2+1) + [b12(λ2−a11)−a12b22]h∗v

a12(λ2+1)

+ [b13(λ2−a11)−a12b23]h∗uv
a12(λ2+1) + [b14(λ2−a11)−a12b24]h∗v2

a12(λ2+1)

+O(|u| , |v| , |h∗|)3,

g(u,v,δ ∗) = [a13(1+a11)+a12a23]uv
a12(λ2+1) + [a14(1+a11)+a12a24]v2

a12(λ2+1)

+ [b11(1+a11)+a12b21]h∗u
a12(λ2+1) + [b12(1+a11)+a12b22]h∗v

a12(λ2+1)

+ [b13(1+a11)+a12b23]h∗uv
a12(λ2+1) + [b14(1+a11)+a12b24]h∗v2

a12(λ2+1)

+O(|u| , |v| , |h∗|)3,

u = a12(S̄+ Ī),

v =−(1+a11) S̄+(λ2−a11) Ī.

Applying center manifold theorem to equation (28) at the origin in the limited neighborhood

of h∗ = 0. The center manifold W c(0,0) can be approximately presented as:

W c (0,0) =
{(

S̄, Ī
)

: Ī = a0h∗+a1S̄2 +a2S̄h∗+a3h∗2 +O
(
(|S̄|+ |h∗|)3

)}
,

where O
(
(|S̄|+ |h∗|)3

)
is a function with at least third order in variables (S̄, h∗).

By simple calculations for center manifold, we have

a0 = 0,
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a1 =
[a13 (1+a11)+a12a23]a12(1+a11)− [a14 (1+a11)+a12a24](1+a11)

2

a12(λ
2
2−1)

,

a2 =
− [b11 (1+a11)+a12b21]a12 +[b12(1+a11)+a12b22](1+a11)

a12(λ2 +1)2 ,

a3 = 0.

Now, consider the map restricted to the center manifold W c (0,0) as below:

K : S̄→−S̄+ k1S̄2 + k2S̄h∗+ k3S̄2h∗+ k4S̄h∗2 + k5S̄3 +O
(
(|S̄|+ |h∗|)4

)
,

where

k1 =− [a13(λ2−a11)−a12a23](1+a11)
(λ2+1) + [a14(λ2−a11)−a12a24](1+a11)

2

a12(λ2+1) ,

k2 =
[b11(λ2−a11)−a12b21]

(λ2+1) − [b12(λ2−a11)−a12b22](1+a11)
a12(λ2+1) ,

k3 =
[a13(λ2−a11)−a12a23](λ2−1−2a11)a2

(λ2+1) + [a14(λ2−a11)−a12a24][−2(1+a11)(λ−a11)a2]
a12(λ2+1)

+ [b11(λ2−a11)−a12b21]a1
(λ2+1) + [b12(λ2−a11)−a12b22](λ2−a11)a1

a12(λ2+1)

− [b13(λ2−a11)−a12b23](1+a11)
(λ2+1) + [b14(λ2−a11)−a12b24](1+a11)

2

a12(λ2+1) ,

k4 =
[b11(λ2−a11)−a12b21]a2

(λ2+1) + [b12(λ2−a11)−a12b22](λ2−a11)a2
a12(λ2+1) ,

k5 =
[a13(λ2−a11)−a12a23](λ2−1−2a11)a1

(λ2+1) − [a14(λ2−a11)−a12a24](1+a11)(λ2−a11)2a1
a12(λ2+1) .

According to Flip bifurcation, the discriminatory quantities γ1 and γ2 are given by:

γ1 =

(
∂ 2K

∂ S̄∂h∗
+

1
2

∂K
∂h∗

∂ 2K
∂ S̄2

)∣∣∣∣
(0,0)

,

γ2 =

(
1
6

∂ 3K
∂ S̄3 +

(
1
2

∂ 2K
∂ S̄2

)2
)∣∣∣∣∣

(0,0)

.

After simple calculations, we obtain γ1 = k2 and γ2 = k5 + k2
1.

Analyzing above and the flip bifurcation conditions discussed in [28], we write the following

theorem:

Theorem 4. If γ2 6= 0, and the parameter h∗ alters in the limiting region of the point (0,0), then

the system (24)-(25) passes through flip bifurcation at the point B(S∗, I∗). Also, the period-

2 points that bifurcate from fixed point B(S∗, I∗) are stable (resp., unstable) if γ2 > 0 (resp.,

γ2 < 0).
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4.2. Hopf Bifurcation. Consider the system (16)-(17) with arbitrary parameter

(β̃ ,m, θ̃ , γ̃, δ̃ , µ̃,h2) ∈ HB, which is described as follows:

S → S+h2
[
1−βe−mISI +θ(1−S− I)−S+δSI

]
,(29)

I → I +h2
[
βe−mISI−δ I− γI− I +δ I2] .(30)

Equation (29)-(30) has fixed point B(S∗, I∗), where S∗, I∗ is given by (18)-(19) and

h2 =−
G
H
.

Consider the perturbation of (29)-(30) as follows:

S → S+(h2 +h)
[
1−βe−mISI +θ(1−S− I)−S+δSI

]
,(31)

I → I +(h2 +h)
[
βe−mISI−δ I− γI− I +δ I2] .(32)

where |h| � 1 is small perturbation parameter.

The characteristic equation of map (31)-(32) at B(S∗, I∗) is given by

λ
2 + p(h)λ +q(h) = 0,

where

p(h) =−2−G(h2 +h),

q(h) = 1+G(h2 +h)+H(h2 +h)2.

Since the parameter (β̃ ,m, θ̃ , γ̃, δ̃ , µ̃,h2) ∈ HB, the eigen values of B(S∗, I∗) are a pair of

complex conjugate numbers λ and λ with modulus 1 by proposition 3, where

λ , λ =
−p(h)∓ i

√
4q(h)− p2(h)
2

.

Therefore

λ , λ = 1+
G(h2 +h)

2
∓ i(h2 +h)

√
4H−G2

2
.

Now we have

|λ |= (q(h))1/2, l =
d |λ |
dh

∣∣∣∣
h=0

=−G
2
> 0.

When h varies in small neighborhood of h = 0, then λ , λ = a∓ ib, where

a = 1+
h2G

2
, b =

h2
√

4H−G2

2
.
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Hopf bifurcation requires that when h = 0, then λ
n
,λ n 6= 1 (n = 1, 2, 3, 4) which is equiva-

lent to p(0) 6=−2, 0, 1, 2.

Since the parameter (β̃ ,m, θ̃ , γ̃, δ̃ , µ̃,h2)∈HB, therefore p(0) 6=−2, 2. It is the only require-

ment that p(0) 6= 0, 1, which follows that

(33) G2 6= 2H, 3H.

Let u = S−S∗ and v = I− I∗.

After transformation of the fixed point B(S∗, I∗) of system (31)-(32) to the point (0,0), we

have

(34)

 u

v

→
 a11u+a12v+a13uv+a14v2 +O(|u| , |v|)3

a21u+a22v+a23uv+a24v2 +O(|u| , |v|)3

 ,

where a11, a12, a13, a14, a21, a22, a23, a24 are given in (27) by substituting h2 for h2 +h.

Next, the normal form of (34) is discussed when h = 0.

Consider the following translation: u

v

= T

 S̄

Ī

 ,

where

T =

 a12 0

a−a11 −b

 .

Taking T−1 on both sides of (34), we get S̄

Ī

→
 a −b

b a

 S̄

Ī

+

 f̄ (S̄, Ī)

ḡ(S̄, Ī)

 ,

where

f̄
(
S̄, Ī
)
=

a13

a12
uv+

a14

a12
v2 +O(|u| , |v|)3,

ḡ
(
S̄, Ī
)
=

[a13 (a−a11)−a12a23]

a12b
uv+

[a14 (a−a11)−a12a24]

a12b
v2 +O(|u| , |v|)3,

u = a12S̄,

and

v = (a−a11) S̄−bĪ.
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Now

f̄S̄S̄ = 2a13(a−a11)+
2a14

a12
(a−a11)

2, f̄S̄Ī =−a13b− 2a14

a12
(a−a11)b, f̄Ī Ī =

2a14

a12
b2,

f̄S̄S̄S̄ = 0, f̄S̄S̄Ī = 0, f̄S̄ĪĪ = 0, f̄Ī Ī Ī = 0,

ḡS̄S̄ =
2(a−a11)

b
[a13 (a−a11)−a12a23]+

2(a−a11)
2

a12b
[a14 (a−a11)−a12a24],

ḡS̄Ī =− [a13 (a−a11)−a12a23]−
2(a−a11)

a12
[a14 (a−a11)−a12a24],

ḡĪ Ī =
2b
a12

[a14 (a−a11)−a12a24],

ḡS̄S̄S̄ = 0, ḡS̄S̄Ī = 0, ḡS̄ĪĪ = 0, ḡĪ Ī Ī = 0.

According to Hopf bifurcation, the discriminatory quantity s is given by

(35) s =−Re

[
(1−2λ )λ

2

1−λ
ϕ11ϕ20

]
− 1

2
‖ϕ11‖2−‖ϕ02‖2 +Re(λϕ21),

where

ϕ20 =
1
8
[
( f̄S̄S̄− f̄Ī Ī +2ḡS̄Ī)+ i

(
ḡS̄S̄− ḡĪ Ī−2 f̄S̄Ī

)]
,

ϕ11 =
1
4
[
( f̄S̄S̄ + f̄Ī Ī)+ i(ḡS̄S̄ + ḡĪ Ī)

]
,

ϕ02 =
1
8
[
( f̄S̄S̄− f̄Ī Ī−2ḡS̄Ī)+ i

(
ḡS̄S̄− ḡĪ Ī +2 f̄S̄Ī

)]
,

ϕ21 =
1
16
[
( f̄S̄S̄S̄ + f̄S̄ĪĪ + ḡS̄S̄Ī + ḡĪ Ī Ī)+ i

(
ḡS̄S̄S̄ + ḡS̄ĪĪ− f̄S̄S̄Ī− f̄Ī Ī Ī

)]
.

Based on the analysis of the above conditions and the Hopf bifurcation, the following theorem

is presented [28]:

Theorem 5. If the condition (33) holds, s 6= 0 and the parameter h alters in the limited region of

the point (0,0), then the system (31)-(32) passes through Hopf bifurcation at the point B(S∗, I∗).

Moreover, if s < 0 (resp., s > 0), then an attracting (resp., repelling) invariant closed curve

bifurcates from the fixed point B(S∗, I∗) for h > 0 (resp., h < 0).
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TABLE 2. Parametric values used for the numerical simulation

Parameter value Reference

Λ 5.0 [15, 16]

δ̃ 0.01 [15, 16]

µ̃ 0.02 [15, 16]

β̃ [0.05,1.5] variable

m [0,2.3] variable

γ̃ 0.05 [15, 16]

θ̃ 0.01 [15, 16]
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FIGURE 3. (a) Bifurcation diagram of system (16)-(17) for β̃ = 1.5, m = 2.3, θ̃ =

0.01, γ̃ = 0.05, δ̃ = 0.01, µ̃ = 0.02 with the initial value of (S, I) = (0.1,0.3) and h

covering [0.16, 0.26]. (b) Largest Lyapunov exponents related to (a).

5. NUMERICAL SIMULATIONS

The system (16)-(17) is numerically simulated in order to support analytical conclusions.

m = 2.3, θ̃ = 0.01, γ̃ = 0.05, δ̃ = 0.01, µ̃ = 0.02 are fixed parameters and taking only β̃ as

variable. The following situations are methodically discussed:

Case 1: For the model (16)-(17), the bifurcation diagram is created using β̃ = 1.5. Flip

bifurcation is visible at h = 0.188987 from the fixed point (0.10522, 0.31278). According

to Figure 3(a), the fixed point of the system (16)-(17) is stable for h < 0.188987, becomes
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FIGURE 4. Phase portraits for several values of h from 0.185 to 0.25 related to Fig. 3

(a).

unstable at h = 0.188987, and exhibits period doubling bifurcation for h > 0.188987. The

fact that γ1 = −12.6611 and γ2 = 7.14924 in this instance indicates that the Theorem 4 is
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FIGURE 5. (a) Bifurcation diagram of system (16)-(17) for β̃ = 0.2, m = 2.3, θ̃ =

0.01, γ̃ = 0.05, δ̃ = 0.01, µ̃ = 0.02 with the initial value of (S, I) = (0.5,0.2) and h

covering [0.595, 0.625]. (b) Largest Lyapunov exponents related to (a).

valid. Additionally, the phase pictures reveal chaotic sets at h = 0.24 and 0.25, as well as

orbits of periods 2, 4, and 8 at h = 0.22, h = 0.23, and h = 0.238, respectively (see Figure

4). Additionally, the chaotic sets are confirmed by the positive Largest Lypunov exponents for

h = 0.24 and 0.25 (see Figure 3(b)).

Case 2: Using β̃ = 0.2, the bifurcation diagram for the model (16)-(17) is created. From

the fixed point (0.5639, 0.15802), it can be observed that the Hopf bifurcation occurs at h =

0.60654. The fixed point of the system (16)-(17) is stable for h < 0.60654, loses stability at

h = 0.60654, and an invariant circle appears for h > 0.60654, according to Figure 5(a). In this

case, s =−5.9564 demonstrates the validity of the Theorem 5. Furthermore, a smooth invariant

circle bifurcates from the fixed point, and its radius grows as h increases, as seen by the phase

portraits in Figure 6.

6. CONCLUSIONS

This paper presents an epidemic model that integrates media awareness, highlighting its im-

portance in controlling disease dynamics. Notably, the coefficient of media awareness, m, does

not influence the basic reproductive number R0, ensuring that the core qualitative features of

the model remain intact. However, the impact of the media coefficient on the fraction of the

infectious population is significant and cannot be overlooked.
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FIGURE 6. Phase portraits for several values of h from 0.605 to 0.62 related to Figure

5 (a).

The existence of bifurcation in a discrete-time system within the closed first quadrant R2
+ is

investigated. The findings reveal that the map exhibits both flip bifurcation and Hopf bifurcation
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at the fixed points under specific conditions, particularly when the step size h varies near FB1 or

FB2 and HB.

The numerical simulations underscore the system’s complexity, showcasing a cascade of

period-doubling bifurcations in orbits of periods 2, 4, and 8, alongside chaotic behavior in flip

bifurcation scenarios. Moreover, smooth invariant circles are identified during the Hopf bifur-

cation. These results powerfully demonstrate that the infected population can coexist with the

susceptible population, whether in periodic n orbits or along smooth invariant circles. Ulti-

mately, this discrete model reveals a rich and intricate dynamical behavior that enhances our

understanding of epidemic processes.
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