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Abstract. Let G be a (p,q) graph. Let V be an inner product space with basis S. We denote the inner product of

the vectors x and y by < x,y >. Let φ : V (G)→ S be a function. For edge uv assign the label < ϕ(u),ϕ(v)>. Then

ϕ is called a vector basis S-cordial labeling of G if |φx− φy| ≤ 1 and |γi− γ j| ≤ 1 where φx denotes the number

of vertices labeled with the vector x and γi denotes the number of edges labeled with the scalar i. A graph which

admits a vector basis S-cordial labeling is called a vector basis S-cordial graph. In this paper, we investigate the

vector basis S-cordial labeling behavior of certain standard graphs like path, cycle, complete graph and star graph.
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1. INTRODUCTION

This study considers a finite, simple and undirected connected graph. The first research paper

on graph theory was published by Leonhard Euler. However, he did not use the word ‘graph’

in his work. In the early stages of the development of the subject, the vertices of a graph were

specified as v1,v2, . . .and the edges were denoted by e1,e2, . . . . In the recent times, several

researchers have attempted to provide different types of labeling to the vertices and edges of a
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graph by identifying the relevant mathematical properties. The present paper provides a novel

method of labeling by employing the basis of an inner product space and so it may form a

foundation for future research work. Graph labeling is one of the important branches of graph

theory. Graph labeling is used in network analysis, cryptography, radar, circuit design, etc.

The concept of graph labeling was introduced by Rosa [12]. For a detailed survey on graph

labeling, we refer the book of Gallian [7]. Super root cube of cube difference labeling of

some special graphs has been studied [16]. Labeling of some pan graphs were examined by

Sarang Sadawartea, Sweta Srivastava [13]. The notion of cordial labeling was first introduced

by Cahit [3]. Abdel-Aal, et al. [1] was discussed a study on the varieties of equivalent cordial

labeling graphs. A novel problem for solving permuted cordial labeling of graphs has been

investigated [6]. Prime cordial labeling for some path, cycle and wheel related graphs have

been investigated by Barasara and Prajapati [3]. Product cordial labelling for some bicyclic

graphs have been studied by Meena and Usharani [10]. Prajapati and Patel [11] proved that

the pentagonal snake and double pentagonal snake are edge product cordial. Results on parity

combination of cordial labeling have been brought out by Seoud and Aboshady [15]. Barasara

et al.[4] proved that the degree splitting of path, cycle, shell graph, comb and crown are divisor

cordial graphs. Edge sum divisor cordial labeling of some graphs with python implementation

has studied in [2]. Sudha Rani and Sindu Devi [15] have proved that the path, cycle graph, star

graph, jelly fish and wheel graphs are dihedral group divisor cordial. For the terminologies and

different notations of graph theory, we refer the book of Harary [8] and for algebra, we refer the

book of Herstein [9]. The comb Pn�K1 [7] is a connected graph obtained by joining a pendent

edge to each vertex of the path Pn. It has 2n vertices and 2n−1 edges. The vector space V over

a field F [9] is said to be an inner product space if there is defined for any two vectors u,v ∈V

an element < u,v > in F such that

(1) < u,v >=< (v,u)>

(2) < u,u >≥ 0 and < u,u >= 0 if and only if u = 0

(3) < αu+βv,w >= α < u,w >+β < v,w > for any u,v,w ∈V and α,β ∈ F .

A subset S of a vector space V is called a basis [9] of V if S consists of linearly independent

elements and V = L(S). In this paper, we introduce a new graph labeling method using a basis
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of an inner product space and investigate some standard graphs like path, cycle, star, complete

graph and comb for this labeling technique.

2. VECTOR BASIS S-CORDIAL LABELING

Definition 2.0.1. Let G be a (p,q) graph. Let V be an inner product space with basis S. We

denote the inner product of the vectors x and y by < x,y >. Let φ : V (G)→ S be a function.

For edge uv assign the label < φ(u),φ(v)>. Then φ is called a vector basis S-cordial labeling

of G if |φx−φy| ≤ 1 and |γi− γ j| ≤ 1 where φx denotes the number of vertices labeled with the

vector x and γi denotes the number of edges labeled with the scalar i. A graph which admits a

vector basis S-cordial labeling is called a vector basis S-cordial graph.

In this paper, we consider the inner product space Rn and the standard inner product < x,y >=

x1y1 + x2y2 + · · ·+ xnyn where x = (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn) , xi,yi ∈ R.

3. MAIN RESULTS

3.1. Vector Basis {(1,0),(0,1)}-Cordial Labeling.

Theorem 3.1.1. A graph G is vector basis {(1,0),(0,1)}-cordial if and only if G is a cordial

graph.

Proof. Consider the basis S = {(1,0),(0,1)} of R2. The following table (1) illustrates the inner

product space due to (1,0) and (0,1).

<> (1,0) (0,1)

(1,0) 1 0

(0,1) 0 1
TABLE 1.

Vertex labels appear in the first row and the first column of table 1 and the interior values in

the table are edge labels. Suppose φ is a vector basis S-cordial labeling of G. Replacing the

label (1,0) by 1 and (0,1) by 0, we get a cordial labeling by table 1. Similarly if f is a cordial

labeling of G, then it is also a vector basis S-cordial labeling of G. �
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3.2. Vector Basis {(1,0,0),(0,1,0),(0,0,1)}-Cordial Labeling.

Theorem 3.2.1. The path Pn is vector basis {(1,0,0),(0,1,0),(0,0,1)}-cordial if and only if

n 6= 3.

Proof. Let Pn be the path u1,u2, . . . ,un.

Case (i): n = 1.

In this case, a vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial labeling of P1 is given in figure

(1).

u1

(1,0,0)

Fig. 1: Vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial labeling of P1.

Case (ii):n = 2.

A vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial labeling in this case is provided in figure (2).

u1 u2

(1,0,0) (0,1,0)

Fig. 2: Vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial labeling of P2.

Case (iii): n = 3

In this case, φ(1,0,0) = φ(0,1,0) = φ(0,0,1) = 1.This implies γ1 = 0, γ2 = 2, a contradiction.

Case (iv): n = 4

Next, assign the vector (1,0,0) to the vertices u1,u2. Assign the vector (0,1,0) to the vertex u3.

Finally, assign the vector (0,0,1) to the vertex u4.

Case (v): n = 5

Now, assign the vector (1,0,0) to the vertices u1,u2. Then, assign the vector (0,1,0) to the ver-

tices u3,u4. Finally, assign the vector (0,0,1) to the vertex u5.

Case (vi):n≡ 0 (mod 6)

First, we assign the vector (1,0,0)to the vertices u1,u2. Also, assign the vector (0,1,0) to the

vertices u3,u4. We assign the vector (0,0,1) to the vertices u5,u6. Continue the above process

till reach the vertex un.

Case (vii):n≡ 1 (mod 6)
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Assign the vector (1,0,0) to the vertices u1,u2. We assign the vector (0,1,0) to the vertices u3,u4.

Further, assign the vector (0,0,1) to the vertices u5,u6. Continue the above process till the vertex

un−1 is reached. Assign the vector (1,0,0) to the final vertex un.

Case (viii): n≡ 2 (mod 6)

We assign the vector (1,0,0) to the vertices u1,u2. Then, assign the vector (0,1,0) to the vertices

u3,u4. Next, assign the vector (0,0,1) to the vertices u5,u6. Continue the above process till

reaching the vertex un−2. Finally, assign the vector (1,0,0) to the vertex un−1 and assign the

vector (0,1,0) to the vertex un.

Case (ix): n≡ 3 (mod 6)

In this case, assign the vector (1,0,0) to the vertices u1,u2. Assign the vector (0,1,0)to the ver-

tices u3,u4. Next, assign the vector (0,0,1) to the vertices u5,u6. Continue the above process till

reaching the vertex un−3. Further, assign the vector (0,0,1) to the vertex un−2. Assign the vector

(0,1,0) to the vertex un−1. Assign the vector (1,0,0) to the final vertex un.

Case (x):n≡ 4 (mod 6)

We assign the vector (1,0,0) to the vertices u1,u2. Assign the vector (0,1,0) to the vertices u3,u4.

Then, assign the vector (0,0,1) to the vertices u5,u6. Continue the above process till the vertex

un−4 is reached. Thereafter, assign the vector (1,0,0) to the vertices un−3,un−2. Assign the vec-

tor (0,1,0) to the vertex un−1. Assign the vector (0,0,1) to the final vertex un.

Case (xi): n≡ 5 (mod 6)

Now, assign the vector (1,0,0) to the vertices u1,u2. Assign the vector (0,1,0) to the vertices

u3,u4. Then assign the vector (0,0,1) to the vertices u5,u6. Continue the above process till

reaching the vertex un−5.Then assign the vector (1,0,0) to the vertices un−4,un−3. Assign the

vector (0,1,0) to the vertices un−2,un−1. Finally, assign the vector (0,0,1) to the vertex un.

Clearly the above labeling method provides a vector basis {(1,0,0),(0,1,0),(0,0,1)}-cordial la-

beling. �

Theorem 3.2.2. The star K1,n is vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial if and only if

n = 1,3.

Proof. Consider the star graph K1,n.

Case (i): n = 1,3
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When n = 1, the star graph K1,1 ' P2, the path P2 is a vector basis {(1,0,0),(0,1,0),

(0,0,1)}–cordial.

When n = 3, a vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial labeling of the star graph K1,3

is given in figure (3).

u1 u2

u3

(1,0,0)
(0,1,0) (0,0,1)

u
(1,0,0)

Fig.3: A vector basis {(1,0,0),(0,1,0),(0,0,1)}–cordial labeling of K1,3.

Case (ii): n = 2

In this case, φ(1,0,0) = φ(0,1,0) = φ(0,0,1) = 1. Then, γ1 = 0, γ2 = 2, a contradiction.

Case (iii):n > 3

To get the edge label 1, the adjacent vertices should be receiving the same label.

Sub-case (i): n = 3k, k > 1

Then φ(1,0,0) = k+1 or φ(0,1,0) = k+1 or φ(0,0,1) = k+1. In this case, γ1 = k, whereas γ0 = 2k.

As k > 1, a contradiction arises.

Sub-case (ii): n = 3k+1, k > 1

As in subcase (i), γ1 = k, whereas γ0 = 2k+1. Then, γ0− γ1 = 2k+1−k = k+1 > 1, as k > 1,

we get a contradiction.

Sub-case (iii): n = 3k+2, k > 1

Then φ(1,0,0)= k+1 or φ(0,1,0)= k+1 or φ(0,0,1)= k+1.Hence γ1 = k, but γ0 = 2k+2 Therefore,

γ0− γ1 = 2k+2− k = k+2 > 1, as k > 1, we get a contradiction. Hence the result. �

Before moving to the next section, prove that the set S = {(1,1,1,1),(1,1,1,0),

(1,1,0,0),(1,0,0,0)} is a basis of R4.

Theorem 3.2.3. The set S = {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)} is a basis for R4 over

R.
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Proof. Consider the relation

a(1,1,1,1)+b(1,1,1,0)+ c(1,1,0,0)+d(1,0,0,0) = (0,0,0,0)

(a,a,a,a)+(b,b,b,0)+(c,c,0,0)+(d,0,0,0) = (0,0,0,0)

(a+b+ c+d,a+b+ c,a+b,a) = (0,0,0,0)

We get, a+b+ c+d = 0,

a+b+ c = 0,

a+b = 0,

a = 0.

Then, a = 0,b = 0,c = 0,d = 0 is the only solution. So the four vectors are linearly independent

over R. Hence S = {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)} is a basis for R4. �

3.3. Vector Basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–Cordial Labeling.

Theorem 3.3.1. Any path Pn is a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–

cordial.

Proof. Let Pn be the path u1u2 . . .un.

Case (i):n≡ 0 (mod 4)

Let n = 4k. Assign the vector (1,1,1,1) to the first k vertices u1,u2, . . . ,uk. Then, assign

the vector (1,1,1,0) to the next k vertices uk+1,uk+2, . . . ,u2k. We assign the vector (1,1,0,0)

to the next k vertices u2k+1,u2k+2, . . . ,u3k. Assign the vector (1,0,0,0) to the next k vertices

u3k+1,u3k+2, . . . ,u4k = un.

Case (ii): n≡ 1 (mod 4)

Let n = 4k+1. We assign the vector (1,1,1,1) to the fist k+1 vertices u1,u2, . . . ,u(k+1). Then,

assign the vector (1,1,1,0) to the next k vertices uk+2,uk+3, . . . ,u2k+1. Also assign the vector

(1,1,0,0) to the next k vertices u2k+2,u2k+3, . . . ,u3k+1. Thereafter, assign the vector (1,0,0,0) to

the next k vertices u3k+2,u3k+3, . . . ,u4k+1 = un.

Case (iii): n≡ 2 (mod 4)

Let n = 4k+2. Assign the vector (1,1,1,1) to the fist k+1 vertices u1,u2, . . . ,uk+1. Assign the

vector (1,1,1,0) to the next k+1 vertices uk+2,uk+3, . . . ,u2k+2. Assign the vector (1,1,0,0) to the
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next k vertices u2k+3,u2k+4, . . . ,u3k+2. Finally, assign the vector (1,0,0,0) to the next k vertices

u3k+3,u3k+4, . . . ,u4k+2 = un.

Case (iv):n≡ 3 (mod 4)

Let n = 4k+3. Assign the vector (1,1,1,1)to the fist k+1 vertices u1,u2, . . . ,uk+1. This is fol-

lowed by the assignment of the vector (1,1,1,0) to the next k+1 vertices uk+2,uk+3, . . . ,u2k+2.

Thereafter assign the vector (1,1,0,0) to the next k+1 vertices u2k+3,u2k+4, . . . ,u3k+3. Further

assign the vector (1,0,0,0) to the next k vertices u3k+4,u3k+5, . . . ,u4k+3 = un.

Clearly the above labeling provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),

(1,0,0,0)}–cordial labeling of Pn. �

Theorem 3.3.2. The cycle Cn is vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–

cordial if and only if n≡ 1,2,3 (mod 4).

Proof. Let Cn be the cycle u1u2 . . .unu1.

Case (i):n≡ 0 (mod 4)

Let n = 4k. To get the edge label 4 the vector (1,1,1,1) should be assigned to the consecutive

vertices of the cycle. As the size of Cn is n, the maximum edges with label 4 is k− 1, a

contradiction.

Case (ii):n≡ 1 (mod 4)

Let n = 4k+ 1. Assign the vector (1,1,1,1) to the fist k+ 1 vertices u1,u2, . . . ,uk+1. Further,

assign the vector (1,1,1,0) to the next k vertices uk+2,uk+3, . . . ,u2k+1. Thereafter, assign the

vector (1,1,0,0) to the next k vertices u2k+2,u2k+3, . . . ,u3k+1. Finally assign the vector (1,0,0,0)

to the next k vertices u3k+2,u3k+3, . . . ,u4k+1 = un.

Case (iii):n≡ 2 (mod 4)

Let n = 4k+2. Assign the vector (1,1,1,1) to the fist k+1 vertices u1,u2, . . . ,uk+1. Assign the

vector (1,1,1,0)to the next k+1 vertices uk+2,uk+3, . . . ,u2k+2. We assign the vector (1,1,0,0) to

the next k vertices u2k+3,u2k+4, . . . ,u3k+2. Then assign the vector (1,0,0,0) to the next k vertices

u3k+3,u3k+4, . . . ,u4k+2 = un.

Case (iv):n≡ 3 (mod 4)

Let n = 4k + 3. Assign the vector (1,1,1,1) to the fist k + 1 vertices u1,u2, . . . ,uk+1. Assign

the vector (1,1,1,0) to the next k + 1 vertices uk+2,uk+3, . . . ,u2k+2. Next, assign the vector
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(1,1,0,0) to the next k+ 1 vertices u2k+3,u2k+4, . . . ,u3k+3. Then assign the vector (1,0,0,0) to

the next k vertices u3k+4,u3k+5, . . . ,u4k+3 = un. Clearly the above labeling pattern is a vector

basis {(1,1,1,1),(1,1,1,0),

(1,1,0,0),(1,0,0,0)}–cordial labeling of Cn. �

Theorem 3.3.3. The star K1,n is vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–

cordial for all natural numbers n.

Proof. Let K1,n be a given star. Let V (K1.n) = {u,ui | 1≤ i≤ n} and E(K1,n) = {uui | 1≤ i≤ n}

be the vertex and edge sets respectively of K1,n. Then |V (K1,n)| = n+ 1 and |E(K1,n)| = n.

Assign the vector (1,1,1,1) to the vertex u. Next, assign the vectors (1,0,0,0), (1,1,0,0), (1,1,1,0),

(1,1,1,1) to the first 4 vertices u1,u2,u3,u4,respectively. Then, assign the vectors (1,0,0,0),

(1,1,0,0), (1,1,1,0)(1,1,1,1) to the next 4 vertices u5,u6,u7,u8,respectively. Continuing in this

way, we reach the vertex un. It is seen that the edge uun receives the label 4 or 3 or 2 or 1

according as n ≡ 0 (mod 4) or n ≡ 3 (mod 4) or n ≡ 2 (mod 4) or n ≡ 1 (mod 4).Clearly

the above labeling pattern bestows a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–

cordial labeling to K(1,n). �

Theorem 3.3.4. The comb Pn � K1 is a vector basis

{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–cordial for all natural numbers n.

Proof. Let V (Pn�K1) = {ui,vi | 1≤ i≤ n} and E(PnK̇1) = {uivi | 1≤ i≤ n} be the vertex and

edge sets of the comb Pn�K1. Then |V (Pn�K1)|= 2n and |E(Pn�K1)|= 2n−1. Let 2n = m.

There arise two cases, namely m≡ 0 (mod 4) and m≡ 2 (mod 4)

Case (i): m≡ 0 (mod 4).

Let m = 4k. Now, we assign the vector (1,1,1,1)to the fist k vertices u1,u2, . . . ,uk. Assign the

vector (1,1,1,0) to the next k vertices uk+1,uk+2, . . . ,un. Assign the vector (1,1,0,0) to the first k

vertices v1,v2, . . . ,vk. Then assign the vector (1,0,0,0) to the next k vertices vk+1,vk+2, . . . ,vn.

Case (ii): m≡ 2 (mod 4)

Let m = 4k+2. In this case, assign the vector (1,1,1,1) to the fist k+1 vertices u1,u2, . . . ,uk+1.

Assign the vector (1,1,1,0) to the first k + 1 vertices v1,v2, . . . ,vk+1. We assign the vector

(1,1,0,0) to the k vertices uk+2,uk+3, . . . ,un. Then assign the vector (1,0,0,0) to the next k
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vertices vk+2,vk+3, . . . ,vn.

Clearly the above labeling provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),

(1,0,0,0)}–cordial labeling to the comb Pn�K1. �

Theorem 3.3.5. The complete graph Kn is a vector basis

{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–cordial if and only if n≤ 3.

Proof. Consider the complete graph Kn. When n = 1, the complete graph K1 ' P1,

the path P1 is a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}–cordial. When

n = 2, K2 ' P2, the path P2 is a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-

cordial. When n = 3, the complete graph K3 ' C2, the cycle C3 is a vector basis

{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial. Let
(n

r

)
denote the number of combina-

tions of n objects taken r at a time.

Case (i): n≡ 0 (mod 4)

Let n = 4k. Then φ(1,1,1,1) = k, φ(1,1,1,0) = k, φ(1,1,0,0) = k and φ(1,0,0,0) = k. Hence we get γ1 =(k
2

)
+k2+k2+k2, γ2 =

(k
2

)
+k2+k2, γ3 =

(k
2

)
+k2, γ4 =

(k
2

)
. Consequently, γ1− γ3 = 2k2 > 1,

as k ≥ 1.

Case (ii): n≡ 1 (mod 4)

Let n = 4k+1. Then any one of the following types of cases can occur:

Type I: φ(1,1,1,1) = k+1, φ(1,1,1,0) = φ(1,1,0,0) = φ(1,0,0,0) = k.

Then γ1 =
(k

2

)
+k2 +k2 +k(k+1),γ2 =

(k
2

)
+k2 +k(k+1),γ3 =

(k
2

)
+k(k+1),γ4 =

(k+1
2

)
. So

we obtain γ1− γ3 = 2k2 > 1, as k ≥ 1.

Type II: φ(1,1,1,0) = k+1,φ(1,1,1,1) = φ(1,1,0,0) = φ(1,0,0,0) = k.

Then γ1 =
(k

2

)
+ k2 + k2 + k(k + 1),γ2 =

(k
2

)
+ k2 + k(k + 1),γ3 =

(k+1
2

)
+ k(k + 1),γ4 =

(k
2

)
.

Therefore, γ1− γ4 = 2k2 + k(k+1)> 1, as k > 1.

Type III: φ(1,1,0,0) = k+1, φ(1,1,1,1) = φ(1,1,1,0) = φ(1,0,0,0) = k.

Hence, γ1 =
(k

2

)
+ k2 + k2 + k(k+ 1),γ2 =

(k+1
2

)
+ k(k+ 1)+ k(k+ 1),γ3 =

(k
2

)
+ k2,γ4 =

(k
2

)
.

So we obtain γ1− γ4 = 2k2 + k(k+1)> 1, as k > 1.

Type IV: φ(1,0,0,0) = k+1, φ(1,1,1,1) = φ(1,1,1,0) = φ(1,1,0,0) = k.

Then, γ1 =
(k+1

2

)
+k(k+1)+k(k+1)+k(k+1),γ2 =

(k
2

)
+k2+k2,γ3 =

(k
2

)
+k2,γ4 =

(k
2

)
. We

see that γ2− γ4 = 2k2 > 1, as k > 1.
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Case (iii): n≡ 2 (mod 4)

Let n = 4k+2. Then any one of the following types of cases can arise.

Type I: φ(1,0,0,0) = φ(1,1,0,0) = k+1, φ(1,1,1,0) = φ(1,1,1,1) = k.

Then, γ1 =
(k+1

2

)
+(k+1)2 + k(k+1)+ k(k+1),γ2 =

(k+1
2

)
+ k(k+1)+ k(k+1),γ3 =

(k
2

)
+

k2,γ4 =
(k

2

)
. So we get γ1− γ4 =

(k+1
2

)
+(k+1)2 + k(k+1)+ k(k+1)−

(k
2

)
> 1, as k > 1.

Type II: φ(1,0,0,0) = φ(1,1,1,0) = k+1, φ(1,1,0,0) = φ(1,1,1,1) = k.

Thus, γ1 =
(k+1

2

)
+ k(k+ 1)+ k(k+ 1)+ (k+1)2,γ2 =

(k
2

)
+ k(k+ 1)+ k2,γ3 =

(k+1
2

)
+ k(k+

1),γ4 =
(k

2

)
. Hence we obtain γ2− γ4 = k(k+1)+ k2 > 1, as k > 1.

Type III: φ(1,0,0,0) = φ(1,1,1,1) = k+1, φ(1,1,0,0) = φ(1,1,1,0) = k.

Hence, γ1 =
(k+1

2

)
+ k(k+ 1)+ k(k+ 1)+ (k+1)2,γ2 =

(k
2

)
+ k2 + k(k+ 1),γ3 =

(k
2

)
+ k(k+

1),γ4 =
(k+1

2

)
. Consequently, γ1− γ4 = 2k(k+1)+(k+1)2 > 1, as k > 1.

Type IV: φ(1,1,0,0) = φ(1,1,1,0) = k+1, φ(1,0,0,0) = φ(1,1,1,1) = k.

Then, γ1 =
(k+1

2

)
+k(k+1)+k(k+1)+k2,γ2 =

(k+1
2

)
+(k+1)2+k(k+1),γ3 =

(k+1
2

)
+k(k+

1),γ4 =
(k

2

)
. Therefore it is seen that γ1− γ4 = 2k(k+1)+ k2 > 1, as k > 1.

Type V: φ(1,1,0,0) = φ(1,1,1,1) = k+1, φ(1,0,0,0) = φ(1,1,1,0) = k.

We have, γ1 =
(k

2

)
+ k(k+1)+ k2 + k(k+1),γ2 =

(k+1
2

)
+ k(k+1)+(k+1)2,γ3 =

(k
2

)
+ k(k+

1),γ4 =
(k+1

2

)
.Consequently, γ2− γ4 = k(k+1)+(k+1)2 > 1, as k > 1.

Type VI: φ((1,0,0,0) = φ(1,1,1,1) = k+1, φ(1,1,0,0) = φ(1,1,1,0) = k.

Now, γ1 =
(k+1

2

)
+ k(k + 1) + k(k + 1) + (k+1)2,γ2 =

(k
2

)
+ k2 + k(k + 1),γ3 =

(k
2

)
+ k(k +

1),γ4 =
(k+1

2

)
. We obtain γ1− γ4 = 2k(k+1)+(k+1)2 > 1, as k > 1.

Case (iv): n≡ 3 (mod 4)

Let n = 4k+3. Then any one of the following types of cases will arise.

Type I: φ(1,0,0,0) = φ(1,1,0,0) = φ(1,1,1,0) = k+1,φ(1,1,1,1) = k.

Then, γ1 =
(k+1

2

)
+(k+1)2+(k+1)2+k(k+1),γ2 =

(k+1
2

)
+(k+1)2+k(k+1),γ3 =

(k+1
2

)
+

k(k+1),γ4 =
(k

2

)
. This implies that γ1− γ3 = 2(k+1)2 > 1, as k > 1.

Type II: φ(1,0,0,0) = φ(1,1,0,0) = φ(1,1,1,1) = k+1,φ(1,1,1,0) = k.

We obtain γ1 =
(k+1

2

)
+ (k+1)2 + k(k + 1) + (k+1)2,γ2 =

(k+1
2

)
+ k(k + 1) + (k+1)2,γ3 =(k

2

)
+ k(k+1),γ4 =

(k+1
2

)
. Hence γ1− γ4 = 2(k+1)2 + k(k+1)> 1, as k > 1.

Type III: φ(1,0,0,0) = φ(1,1,1,0) = φ(1,1,1,1) = k+1,φ(1,1,0,0) = k.
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We have γ1 =
(k+1

2

)
+ k(k + 1) + (k+1)2 + (k+1)2,γ2 =

(k
2

)
+ k(k + 1) + k(k + 1),γ3 =(k+1

2

)
+(k+1)2,γ4 =

(k+1
2

)
. Consequently γ1− γ4 = k(k+1)+2(k+1)2 > 1, as k > 1.

Type IV: φ(1,1,0,0) = φ(1,1,1,0) = φ(1,1,1,1) = k+1,φ(1,0,0,0) = k.

Then, γ1 =
(k

2

)
+ k(k+ 1)+ k(k+ 1)+ k(k+ 1),γ2 =

(k+1
2

)
+(k+1)2 +(k+1)2,γ3 =

(k+1
2

)
+

(k+1)2,γ4 =
(k+1

2

)
. We get γ2− γ4 = 2(k+1)2 > 1, as k > 1.

Hence the complete graph Kn is vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),

(1,0,0,0)}–cordial if and only if n≤ 3. �

4. CONCLUSION

In this paper, we have introduced a new labeling concept called a vector basis S-cordial

labeling. Vector basis S-cordial labeling behavior of certain standard graphs like path, cycle,

complete graph and star graph has been studied for some basis. Results on the non-existence

of this labeling in certain cases have been brought out in this study. Investigation of several

other families of graphs for the existence of vector basis S-cordial labeling is an open problem.

Labeling the vertices and edges of the graph with the application of an inner product space can

be expected to attract researches to undertake more work in this unexplored area.
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