
Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 3, 624-636

ISSN: 1927-5307

THEORY OF IMPRECISE SETS: IMPRECISE RANDOMNESS AND
BAYESIAN STATISTICS

HEMANTA K. BARUAH∗

Department of Statistics, Gauhati University, Guwahati-781014, India

Abstract. If the realizations of a random variable are imprecise in the sense that two independent laws

of randomness can define the presence level of values of the variable in a given interval, we would have to

deal with the matters using the idea of imprecise randomness. In Bayesian methodology, inferences are

made with reference to a probability law which is followed by a parameter that describes a probability

law which is followed by a random variable. In this article, the mathematics of imprecise randomness has

been introduced, and an attempt has been made to link the concept of imprecise randomness with that

of Bayesian statistical inference.
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1. Introduction

There are two distinct paradigms of statistical inferences: Bayesian and non-Bayesian.

In the Bayesian inferential procedure, it is assumed that a parameter describing a proba-

bility law of a random variable follows a probability law on its own, and the procedure is

aimed at finding not just one single estimate of the parameter, but at making inferences
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with reference to the probability law followed by the parameter (see for example [1, 2]).

In the non-Bayesian or the conventional approach, one aims at finding one single estimate

of the parameter. The Bayesian approach starts with a subjective judgement regarding

the probability law followed by the parameter. This subjectivity however is something

that has not been really accepted by the non-Bayesians since the beginning.

Impreciseness as a concept of uncertainty has been defined by the present author as

that kind of uncertainty in which the elements in an interval are partially present [3]. It is

different from the concept of fuzziness in the sense that unlike the fuzzy sets, the imprecise

sets do conform to the classical measure theoretic as well as field theoretic formalisms.

Such matters have been discussed in detail by the present author while defining fuzziness

logically from his standpoint [4, 5, 6, 7].

When the observations of a random variable following a probability law are imprecise,

we can call that variable an imprecise random variable. The randomness concerned would

then be called imprecise randomness. In this article, we are going to introduce the math-

ematics of imprecise randomness, and thereafter we are going to discuss its link with the

Bayesian statistical inferential methodology. We have in fact mentioned about this link

between the two concepts in an earlier work [7, page 18]. In what follows, we would discuss

certain very basic things in short about non-Bayesian and Bayesian matters. That would

be followed by a discussion on how to make probabilistic conclusions from imprecise data.

Finally, we shall make an attempt to link imprecise randomness and Bayesian principles.

2. Statistical Inference : Conventional and Bayesian

In conventional statistical analysis, it is presumed that observations xi, i = 1(1)n, of a

random variable X lie around an unknown parameter µ such that

xi = µ+ εi

where εi is an error following a probability law of errors. We are using the term random

variable here in the statistical sense and not in the broader measure theoretic sense. The
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parameter here is presumed to be fixed, so that the probability law followed by the error

variable can be translated to the random variable X. For estimation of the parameter,

the three Gauss-Markov conditions for estimation of a linear parameter

(1) mathematical expectation of εi, E(εi) = 0,

(2) variance of εi, V (εi) = a constant independent of i, and

(3) covariance of εi and εj , E(εiεj) = 0 for i 6= j,

are presumed to be followed.

For example, in a laboratory experiment if we need to measure the length µ of a rod,

it would be presumed that no measuring device is ever perfect, and hence a number of

observations xi would be taken. The value of the sample mean computed from the obser-

vations thereafter would be taken as an estimate of µ. This is the essence of conventional

statistical estimation of a linear parameter.

The Bayesian estimation principles are based on the Bayes’ Theorem on conditional

probability. In simple terms, it can be expressed as what follows. For two probabilistic

events A and B, we trivially have the following relationship linking the conditional prob-

ability of happening of the event A given that the event B has already happened and the

conditional probability of the event B given that the event A has already happened:

Prob(A|B)Prob(B) = Prob(B|A)Prob(A)

and therefore

Prob(A|B) = Prob(B|A)Prob(A)/Prob(B).

This innocuous looking identity has led to the Bayes’ theorem on conditional probability

of an event that had already happened, and based on this philosophy of finding the prob-

ability of a past event there ultimately came into existence a totally different paradigm

of statistical inferential matters, that came to be known as Bayesian inference. For those

who are not conversant with the Bayes’ theorem, we would like to cite a classroom exam-

ple of use of this identity first.

Assume that there are three identical boxes each having green and white balls in pos-

sibly different configurations. We can select a box at random, and draw a ball from it.



THEORY OF IMPRECISE SETS: IMPRECISE RANDOMNESS AND BAYESIAN STATISTICS 627

The probability of drawing a green ball, say, can thus be computed. Now assume that

a ball has been drawn, and that the ball happens to be green. Bayes’ theorem shows

the way to find the probability that the second box, say, was chosen given that the ball

drawn happens to be a green one. In the identity shown above, A can be the event of

selecting the second box and B can be the event of drawing a green ball. The probability

of happening of B given that A has happened, divided by the probability that B happens

with reference to selecting every box, gives us the probability that A had happened in the

past given that B will happen in the future.

As we have seen, this theorem gives the probability of an event that has already hap-

pened in the past. Evaluating the probability of a past event may not quite seem to be

logical, but this identity is algebraically true anyway. Be that whatever, in the Bayesian

inferential principles, it is presumed that the parameter to be estimated is not fixed; it

lies in an interval, following some probability law on its own. In other words, here the

parameter is taken to be a probabilistic variable on its own right, following what came to

be known as a prior probability law giving an indirect reference to the past which is why

there came up the nomenclature Bayesian Inference.

In our earlier example, the length of the rod must necessarily be fixed. So in that kind

of a case, the Bayesian principles are not needed. Assume that we have some observations

on some stock market related situation. In such a case, presumption of existence of a

fixed value of a parameter may not actually be quite logical. Indeed in such a case, it

can safely be presumed that the parameter lies in an interval, following some probability

law. For example, the probability law followed by the parameter can be assumed to be

uniform. More complicated prior probability laws are also in use making the question of

subjectivity more prominent. We are not going to make any comment on acceptability or

otherwise of such complicated prior probability laws in the Bayesian inferential matters.

This is a debatable question, and we are not interested to enter into that at present.

3. Imprecise Numbers: Definitions and Notations
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We are now going to define certain terms with reference to impreciseness [3].

Definition 3.1. An imprecise number [α, β, γ] is an interval around the real number β

with the elements in the interval being partially present.

Definition 3.2. Partial presence of an element in an imprecise real number [α, β, γ] is

described by the presence level indicator function p(x) which is counted from the reference

function r(x) such that the presence level for any x, α ≤ x ≤ γ , is (p(x)− r(x)), where

0 ≤ r(x) ≤ p(x) ≤ 1.

Definition 3.3. A normal imprecise number N = [α, β, γ] is associated with a presence

level indicator function µN(x), where

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise,

with a constant reference function 0 in the entire real line. Here Ψ1(x) is continuous and

non-decreasing in the interval [α, β], and Ψ2(x) is continuous and non-increasing in the

interval [β, γ], with

Ψ1(α) = Ψ2(γ) = 0,

Ψ1(β) = Ψ2(β) = 1.

Here, the imprecise number would be characterized by {x, µN(x), 0 : xεR}, R being the

real line.

Definition 3.4. For a normal imprecise number N = [α, β, γ] with presence level indica-

tor function

µN(x) =


Ψ1(x), if α ≤ x ≤ β

Ψ2(x), if β ≤ x ≤ γ

0, otherwise,

such that

Ψ1(α) = Ψ2(γ) = 0,

Ψ1(β) = Ψ2(β) = 1,
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with constant reference function equal to 0, Ψ1(x) is the distribution function of a ran-

dom variable defined in the interval [α, β], and Ψ2(x) is the complementary distribution

function of another random variable defined in the interval [β, γ].

Definition 3.5. For a normal imprecise number N = {x, µN(x), 0 : xεR} as defined

above, the complement NC = {x, 1, µN(x) : xεR} will have constant presence level indi-

cator function equal to 1, the reference function being µN(x) for −∞ < x <∞.

We are using the term random variable here in the broader measure theoretic sense

which does not require that the notion of probability needs to appear in defining ran-

domness. What we mean is that a random variable need not be probabilistic, while a

probabilistic variable is necessarily random.

Definition - 3.1 here is indeed the definition of a fuzzy number. Definition - 3.2 is

based on a function of reference which is not there in the original definition of fuzzy sets.

Definition - 3.3 again is indeed the definition of a normal fuzzy number with constant

reference function equal to zero. Definition - 3. 4 expresses how the membership function

of a normal fuzzy number should really have been defined based on two independent laws

of randomness, with randomness defined in the measure theoretic sense. Here is where

we have deviated from the Zadehian theory of fuzziness. The Zadehian theory assumes

that one single law of probability can be formed from any given law of normal fuzziness

and vice versa. This in our eyes is absolutely illogical as a normal law of fuzziness can be

derived from two independent laws of randomness already [5, 6, 7]. Finally, Definition -

3.5 is on how to express the complement of a normal fuzzy set correctly [4]. The Zadehi-

an definition of the complement of a fuzzy set is incorrect as it leads to a highly illogical

conclusion that any statement and its complement do not complement each other.

4. Imprecise Randomness

We would like to start our discussions now with an example in which impreciseness

is inherent. Consider the case of variability of temperature in a particular place [6]. It

is obvious that both the minimum temperature and the maximum temperature in any

place at any time are two probabilistic variables, and therefore they are random variables
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in the measure theoretic sense too. The two laws of randomness in this case would lead

to an imprecise number [3]. In the case of variables related to rise and fall of price in

stock exchanges, there always are two random variables in action, one for the minimum

price, and the other for the maximum prices, giving rise to imprecise numbers. Now, if

a random variable takes imprecise values, we shall have to deal with the situation using

the mathematics of imprecise randomness.

Assume that X is a random variable following the normal probability law with location

parameter µ and variance unity. Now if the location parameter is not fixed but imprecise

instead, defined as

M = [µ− δ, µ, µ+ δ], δ > 0

we would actually have to define an uncountably infinite number of normal probability

density functions with the value of the location parameter ranging from (µ− δ) to (µ+ δ)

with maximum value of presence level assigned at the value µ.

Assume further that from this population, a sample of n imprecise observations around

x1, x2, . . . , xn has been drawn. We can then proceed to infer about the population, based

on the sample data. We now proceed towards statistical analysis with reference to impre-

cise randomness.

The imprecise data are in terms of imprecise numbers around xi, i = 1, 2, . . . , n defined

as, say,

Xi = [xi − δ, xi, xi + δ], δ > 0.

The analysis can now proceed towards making an imprecise statistical conclusion. With-

out loss of generality, and for computational simplicity, such imprecise numbers can be

taken as triangular imprecise numbers.

In this case, it is presumed that observations xi, i = 1(1)n, of a random variable X lie

around an unknown parameter µ such that

[xi − δ, xi, xi + δ] = [µ− δ, µ, µ+ δ] + εi,
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where εi is an error following the normal probability law of errors.

Let the normal imprecise number

M = [µ− δ, µ, µ+ δ], δ > 0

be associated with the presence level indicator function µM(x), where

µM(x) =


Ψ1(x), if µ− δ ≤ x ≤ µ

Ψ2(x), if µ ≤ x ≤ µ+ δ

0, otherwise,

with constant reference function 0 on the real line. In other words, we shall have for

Xi = [xi − δ, xi, xi + δ]

the indicator function as

µX(x) =


Ψ1(x), if xi − δ ≤ x ≤ xi

Ψ2(x), if xi ≤ x ≤ xi + δ

0, otherwise,

with the constant reference function 0 on the real line.

It can bee seen that from the distribution function Ψ1(x), for xi− δ ≤ x ≤ xi, we shall

get the density function

dΨ1(x)

dx
= ϕ1(x)

Similarly, from the complementary distribution function Ψ2(x), for xi ≤ x ≤ xi + δ, we

shall get the density function

d(1−Ψ2(x))

dx
= ϕ2(x).

Accordingly, a triangular imprecise number

Xi = [xi − δ, xi, xi + δ]
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with the presence level indicator function

µX(x) =



(x− xi + δ)

δ
, if xi − δ ≤ x ≤ xi

(xi + δ − x)

δ
, if xi ≤ x ≤ xi + δ

0, otherwise,

would be defined by two laws of randomness with distribution functions

F1(x) =
(x− xi + δ)

δ
, if xi − δ ≤ x ≤ xi,

and

F2(x) = 1− (xi + δ − x)

δ
, if xi ≤ x ≤ xi + δ,

so that their densities

dF1(x)

dx
=

1

δ
, if xi − δ ≤ x ≤ xi,

and

dF2(x)

dx
=

1

δ
, if xi ≤ x ≤ xi + δ

are uniform.

That is how the question of imprecise randomness should come up. There should be a

variable following some law of randomness. In an interval around every realization of the

random variable, there should be impreciseness. The conclusions arrived at from analysis

of such data will also be in terms of impreciseness.

As soon as we surmise that the data are imprecise, or in other words that the data are

of the interval type with an appropriately defined presence level indicator function, we

presume that there is one law of randomness in [µ − δ, µ] while there is another law of

randomness in [µ, µ + δ]. The readers would note here that for probabilistic conclusions

based on imprecise random data, we however would need to define two probability laws

in the statistical sense in the two intervals [µ− δ, µ] and [µ, µ+ δ].

We now cite a numerical example [7]. Suppose we start with hypothetical imprecise

data of the type [x− 0.5, x, x+ 0.5] with an assumption that the data are triangular. The

random variable X of which this x is a realization in the sample has been assumed to

be normally distributed. In other words, we have started with an assumption that the
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two probability laws, one on [x − 0.5, x] and the other on [x, x + 0.5], are uniform, for a

normally distributed realization x with mean µ and error variance σ2, say. Assume that

we finally arrived at an imprecise value of the F - statistic for 3 and 6 degrees of freedom,

say, with the following presence level indicator function:

µF (x) =


174.303x

(157.733x+ 17.992)
, if 0 ≤ x ≤ 0.482

86.858

(78.866 + 16.570x)
, if 0.482 ≤ x <∞.

Accordingly, the following two distribution functions would decide the imprecise number

concerned:

Ψ1(x) =
174.303x

(157.733x+ 17.992)
, for 0 ≤ x ≤ 0.482

and

(1−Ψ2(x)) = 1− 86.858

(78.866 + 16.570x)
, for 0.482 ≤ x <∞.

In other words, the imprecise number F = [0, 0.482,∞) with Ψ1(F ) and Ψ2(F ) defined

in the intervals 0 ≤ F ≤ 0.482 and 0.482 ≤ F <∞ respectively, would be defined by the

two densities d(Ψ1(F ))/dF and d(1−Ψ2(F ))/dF in the respective ranges.

In the non-imprecise situation, we would have concluded that there is no reason to

reject the null hypothesis at 5% probability level of significance as the computed value

of F (= 0.482) is smaller than the theoretical value of F (= 4.7571) for 3 and 6 degrees

of freedom. We now proceed to look into the matters of making an imprecise conclusion

statistically. The theoretical non-imprecise value of F (= 4.7571) to the right of which the

area under the probability density function of F is 0.05, is on that part of the interval on

which

µF (x) =
86.858

(78.866 + 16.570x)
, if 0.482 ≤ x <∞,

has been defined. We note that the presence level for F = 4.7571 is Ψ2(4.7571). Therefore,

in this case, the probability density function concerned would be given by

ϕ2(F ) =
1439.23706

(78.866 + 16.570F )2
, for 0.482 ≤ F <∞.

Hence

Prob[F ≥ 4.7571] = the area under ϕ2(F )
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from F = 4.7571 to infinity, which is the area of the right tail beyond 4.5751. The area

of the left tail from 0.482 to 4.5751 is (1−Ψ2(4.7571)). Thus the area of the right tail is

Ψ2(4.7571) again, which is nothing but the presence level of F at 4.7571.

Ψ2(4.7571) = 0.5508

is therefore the probability that the imprecise null hypothesis would have to be rejected

at 5% probability level of significance. In other words, when a non-rejectable hypothesis

is made imprecise, there will still be a probability that the imprecise hypothesis would

actually be found rejectable.

In the same way, if a rejectable hypothesis is made imprecise, there would still be a

probability that the imprecise hypothesis would be found non-rejectable, the probability

of non-rejection in our example being decided by

µF (x) =
174.303x

(157.733x+ 17.992)
, if 0 ≤ x ≤ 0.482,

this time.

5. Imprecise Randomness versus Bayesian Inference

We now proceed to discuss our standpoint to link imprecise randomness and Bayesian

statistics. At this point, we would like to mention two important things regarding fuzzy

randomness. We would like to remind the readers that the definition of fuzziness does

not explain in what way the membership function of a fuzzy number can be constructed.

Indeed, in the Dubois - Prade nomenclature, the fuzzy membership function of a normal

fuzzy number can be explained in terms of a left reference function, which is nothing but

our Ψ1(x), and in terms of a right reference function, which is nothing but our Ψ2(x).

However, in the literature on fuzziness, other than the present author’s works, there is

no reference to randomness separately with reference to Ψ1(x) and Ψ2(x). Based on an

assumption that there can be framed one law of probability from a law of fuzziness, the

works in the mathematics of fuzziness are continuing since the beginning. This was one

reason why we have proposed a different name for this type of uncertainty [3]. For two
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reasons, fuzzy randomness and imprecise randomness are entirely different things. First,

in terms of imprecise randomness, we can put forward probabilistic interpretations of the

conclusions; this is simply not possible in the case of fuzzy randomness because in the

Zadehian definition of fuzziness there is no mention that the membership function of a

normal fuzzy number can be explained with the help of two independent laws of random-

ness. Secondly, for testing the rejectability of a fuzzy hypothesis, the workers have always

referred to the alternative hypothesis as the complement of the fuzzy set defined in the

currently available manner. Such a definition of complementation is not correct [4, 7].

Therefore in every case of fuzzy statistical hypothesis testing available in the literature,

the alternative hypotheses must necessarily be redefined. Hence, fuzzy randomness with

fuzziness defined in the Zadehian manner and imprecise randomness are two totally differ-

ent things. However, fuzzy randomness from our standpoint [7] and imprecise randomness

are indeed the same.

In the case of the classical Bayesian statistical mathematics, a prior probability law

is assumed with reference to a parameter associated with the law of probability of the

variable concerned. Assume for example, that a variable follows the normal probability

law of errors with location parameter µ. Now if this µ is presumed to follow the uniform

probability law for example, in the interval [a, b], the Bayesian inferential procedures are

there to analyse the data concerned. It is another matter that the decision of what type

of probability law would be enforced on the parameter µ is of course based on subjective

judgement.

In imprecise randomness, we have two laws of randomness defining impreciseness of

a parameter associated with a random variable following some probability law of errors.

We have shown that imprecise numbers can actually be constructed [6], and therefore one

need not really presume impreciseness, which in other words means that the question of

subjectivity need not really arise here.

We have mentioned earlier that not in all situations the Bayesian principles can be

applied. In our earlier example of measuring the length of a rod, the question of applying

Bayesian estimation does not arise. In the same way, in this case, the data can never be
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imprecise, and therefore the question of applying the mathematics of imprecise random-

ness too does not arise in this case. Indeed when the parameter is probabilistic, we can

go for Bayesian inferential matters, and when the parameter is imprecise, we can go for

the analysis using imprecise randomness.

Finally, it can be seen that just the distribution function Ψ1(x) defined in some interval

[a, b] can define an imprecise number of the type [a, b, b] already. Therefore imprecise

randomness with impreciseness defined by numbers of the type [a, b, b] can be seen to be

similar to using the Bayesian methodology in analysing data. Use of the arithmetic of

impreciseness in this case would anyway be easier than using a prior probability law to

draw statistical inferences.
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