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Abstract. In this paper, using δ - strongly monotone and λ - strictly pseudo-contractive (in the terminology of

Browder-Petryshyn type) mapping F on a real Hilbert space H, we introduce an implicit iterative scheme to

find a common element of the set of solutions of a system of equilibrium problems and the set of fixed points

of amenable semigroup of non-expansive mappings and infinite family of non-expansive mappings on H, with

respect to a sequence of left regular means defined on an appropriate space of bounded real valued functions of

semigroup. Then, we prove the convergence of sequence generated by the suggested algorithm to a unique solution

of the variational inequality.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let φ be

a bi-function of C×C into R, where R is the set of real numbers. The equilibrium problem for
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φ : C×C→ R is to determine its equilibrium points, i.e the set

EP(φ) = {x ∈C : φ(x,y)≥ 0,∀y ∈C}.(1)

Let J = {φi}i∈I be a family of bi-functions from C×C into R. The system of equilibrium

problems for J = {φi}i∈I is to determine common equilibrium points for J = {φi}i∈I , i.e the

set

EP(J ) = {x ∈C : φi(x,y)≥ 0,∀y ∈C, ∀i ∈ I}.(2)

Numerous problems in physics, optimization, and economics reduce into finding some element

of EP(φ). Some methods have been proposed to solve the equilibrium problem; see, for in-

stance, [3, 9, 10, 21]. The formulation (2), extend this formalism to systems of such problems,

covering in particular various forms of feasibility problems [2, 8].

A mapping T of C into itself is called non-expansive if ‖ T x−Ty ‖≤‖ x−y ‖, for all x,y ∈C.

By Fix(T ), we denote the set of fixed point of T i.e., Fix(T ) = {x ∈ H : T x = x}. It is well

known that Fix(T ) is closed convex. Recall that a self-mapping f : C→C is a contraction on C

if there is a constant α ∈ (0,1) such that

‖ f x− f y ‖≤ α ‖ x− y ‖, ∀x,y ∈C.

Assume A : H→ H is strongly positive; that is, there is a constant γ > 0 with the property

〈Ax,x〉 ≥ γ ‖ x ‖2, ∀x ∈ H.

Given any r > 0 the operator Jφ
r : H→C defined by

Jφ
r (x) = {z ∈C : φ(z,y)+

1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C},

is called the resolvent of F , see [9]. It is shown in [9] that, under suitable hypotheses on F (to

be stated precisely in Section 2), Jφ
r : H → C is single- valued and firmly non-expansive and

satisfies

Fix(Jφ
r ) = EP(φ), ∀r > 0.

Using this result in 2007, Plubtieng and Punpaeng [19] proved the following strong conver-

gence theorem for an implicit iterative sequence {xn} obtained from the viscosity approximation
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method for finding a common element in EP(φ)∩Fix(T ) which solves some certain variational

inequality.

Theorem 1.1. Let H be a real Hilbert space and φ be a bi-functions from H ×H into R

satisfying

(A1) φ(x,x) = 0 for all x ∈ H,

(A2) φ is monotone, i.e; φ(x,y)+φ(y,x)≤ 0 for all x,y ∈ H,

(A3) for all x,y,z ∈ H, limsupt→0 φ(tz+(1− t)x,y)≤ φ(x,y),

(A4) for all x ∈ H, y→ φ(x,y) is convex and lower semi-continuous.

For r > 0, set Jφ
r : H→ H to be the resolvent of φ , i.e. Jφ

r (x) is the unique z ∈ H for which

φ(z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈ H.

Let T be a non-expansive mapping on H such that EP(φ)∩Fix(T ) 6= /0. Let f be a contraction

of H into itself with coefficient α ∈ (0,1) and let A be strongly positive bounded linear mapping

on H with coefficient γ > 0 and 0 < γ < γ

α
. Let {xn} be the sequence generated by

{
xn = αnγ f (xn)+(I−αnA)Tyn, ∀n ∈ N,

φ(yn,y)+ 1
rn
〈y− yn,yn− xn〉 ≥ 0, ∀y ∈ H,

where yn = Jφ
rn(xn), {rn}⊂ (0,∞) and {αn}⊂ [0,1] satisfying limn→∞ αn = 0 and liminfn→∞ rn >

0. The sequences {xn} and {yn} converge strongly to a unique point x∗ ∈ EP(φ)∩Fix(T ) which

solves the variational inequality:

〈(γ f −A)x∗,x− x∗〉 ≤ 0, ∀x ∈ EP(φ)∩Fix(T ).

Let {Ti}∞
i=1 be a sequence of non-expansive mappings of C into itself and let {λi}∞

i=1 be a

sequence of nonnegative real numbers in [0,1]. For each n ≥ 1, define a mapping Wn of C into
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itself as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 +(1−λn)I,

Un,n−1 = λn−1Tn−1Un,n +(1−λn−1)I,

...(3)

Un,k = λkTkUn,k+1 +(1−λk)I,

Un,k−1 = λk−1Tk−1Un,k +(1−λk−1)I,

...

Un,2 = λ2T2Un,3 +(1−λ2)I,

Wn =Un,1 = λ1T1Un,2 +(1−λ1)I.

Such a mapping Wn is called the W−mapping generated by T1,T2, · · · ,Tn and λ1,λ2, · · · ,λn.

Then Colao et al. [7] proved the following strong convergence theorem.

Theorem 1.2. Let H be a real Hilbert space , {Ti}∞
i=1 an infinite family of non-expansive

mapping of H into H, for k ∈ {1,2, · · · ,M} φk a bi-function from H×H into R, A a strongly

positive bounded linear mapping on H with coefficient γ > 0 and f an α−contraction on H.

Moreover, let {rk,n}M
k=1, {αn} and {λn} be real sequences such that rk,n > 0, 0 < λn ≤ b < 1, γ

be a real number such that 0 < γ < γ

α
. Assume that,

(B1) for every k ∈ {1,2, · · · ,M}, the bifunction φk satisfies (A1)− (A4),

(B2) F = (
⋂M

k=1 EP(φk))∩ (
⋂

∞
i=1 Fix(Ti)) 6= /0,

(B3) the sequence {αn} satisfies limn→∞ αn = 0,

(B4) the sequences {rk,n}M
k=1 satisfy limn→∞ rk,n = r̂k > 0 for every k ∈ {1,2, · · · ,M}.

Let Wn be the mapping defined by (3) and the sequence {xn} generated by

xn = αnγ f (xn)+(I−αnA)WnJφ1
r1,n

Jφ2
r2,n
· · ·JφM

rM,n
xn, ∀n ∈ N,
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Then, the sequence {xn} converges strongly to x∗ ∈F , where x∗ is the unique solution of the

variational inequality

〈(γ f −A)x∗,x− x∗〉 ≤ 0, ∀x ∈F .

A mapping F with domain D(F) and range R(F) in H is called δ -strongly monotone if there

exists a positive real number δ > 0 such that

〈Fx−Fy,x− y〉 ≥ δ ‖ x− y ‖2, ∀x,y ∈ D(F).(4)

F is called λ -strictly pseudo-contractive in the terminology of Browder and Petryshyn [4] if

there exists a real number λ ∈ [0,1) such that

‖ Fx−Fy ‖2≤‖ x− y ‖2 +λ ‖ (I−F)x− (I−F)y ‖2, ∀x,y ∈ D(F).(5)

It is well-known that (5) is equivalent to

〈Fx−Fy,x− y〉 ≤‖ x− y ‖2 −1−λ

2
‖ (I−F)x− (I−F)y ‖2 .(6)

In this paper, motivated and inspired by Lau et al. [11] Colao et al. [7], Piri [14, 15, 16, 17],

Piri and Badali [18] and Marino and Xu [13], we introduce an implicit iterative scheme to

fined a common element of the set of solutions of a system of equilibrium problems and the

set of fixed points of an amenable semigroup of non-expansive mappings and infinite family of

non-expansive mappings on a real Hilbert space. Let F be a mapping on real Hilbert space H

which is both δ - strongly monotone and λ - strictly pseudo-contractive of Browder-Petryshyn

type such that δ > 1+λ

2 . Assume S be a semigroup and ϕ = {Tt : t ∈ S} be a non-expansive

semigroup on H such that Fix(ϕ) =
⋂

t∈S
Fix(Tt) 6= /0. Let X be a subspace of B(S) such that

1 ∈ X and the function t → 〈Tt(x),y〉 is an element of X for each x,y ∈ H,. Let {µn} be a

sequence of means on X . We define a sequence {xn} by

xn = αnγ f (xn)+(I−αnF)TµnWnJφM
rM,n
· · ·Jφ2

r2,n
Jφ1

r1,n
xn, ∀n ∈ N,

where γ ∈

(
0,

1−
√

2−2δ

1−λ

α

)
. We prove that under assumption on parameters like that in Colao et

al. [7], the sequence {xn} strongly converges to x∗ ∈F =
⋂

∞
i=1 Fix(Ti)∩Fix(ϕ)∩

⋂M
k=1 EP(φk),
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where x∗ solves the variational inequality

〈(γ f −F)x∗,x− x∗〉 ≤ 0, ∀x ∈F .

Our results improve the corresponding results announced by many others and a consequence

for commuting pairs of non-expansive mappings is also presented.

2. Preliminaries

Let S be a semigroup and let B(S) be the space of all bounded real valued functions defined

on S with supremum norm. For s ∈ S and f ∈ B(S), we define elements ls f and rs f in B(S) by

(ls f )(t) = f (st), (rs f )(t) = f (ts), ∀t ∈ S.

Let X be a subspace of B(S) containing 1 and let X∗ be its dual. An element µ in X∗ is said to

be a mean on X if ‖ µ ‖= µ(1) = 1. We often write µt( f (t)) instead of µ( f ) for µ ∈ X∗ and

f ∈ X . Let X be left invariant (resp. right invariant), i.e., ls(X)⊂ X (resp. rs(X)⊂ X) for each

s ∈ S. A mean µ on X is said to be left invariant (resp. right invariant) if µ(ls f ) = µ( f ) (resp.

µ(rs f ) = µ( f )) for each s ∈ S and f ∈ X . X is said to be left (resp. right) amenable if X has a

left (resp. right) invariant mean. X is amenable if X is both left and right amenable. As is well

known, B(S) is amenable when S is a commutative semigroup, see [12]. A net {µα} of means

on X is said to be strongly left regular if

lim
α
‖ ls∗µα −µα ‖= 0,

for each s ∈ S, where l∗s is the adjoint operator of ls.

Let C be a nonempty closed and convex subset of a reflexive Banach space E. A family

ϕ = {Tt : t ∈ S} of mapping from C into itself is said to be a non-expansive semigroup on C if

Tt is non-expansive and Tts = TtTs for each t,s ∈ S. By Fix(ϕ) we denote the set of common

fixed points of ϕ , i.e.

Fix(ϕ) =
⋂
t∈S

{x ∈C : Tt(x) = x}.

Lemma 2.1. [12] Let S be a semigroup and C be a nonempty closed convex subset of a reflexive

Banach space E. Let ϕ = {Tt : t ∈ S} be a nonexpansive semigroup on H such that {Ttx : t ∈ S}
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is bounded for some x ∈ C, let X be a subspace of B(S) such that 1 ∈ X and the mapping

t→ 〈Ttx,y∗〉 is an element of X for each x ∈C and y∗ ∈ E∗, and µ is a mean on X. If we write

Tµx instead of
∫

Ttxdµ(t), then the followings hold.

(i) Tµ is nonexpansive mapping from C into C.

(ii) Tµx = x for each x ∈ Fix(ϕ).

(iii) Tµx ∈ co{Ttx : t ∈ S} for each x ∈C.

Let C be a nonempty subset of a Hilbert space H and T : C→ H a mapping. Then T is said

to be demiclosed at v ∈ H if, for any sequence {xn} in C, the following implication holds:

xn ⇀ u ∈C, T xn→ v imply Tu = v,

where→ (resp. ⇀ ) denotes strong (resp. weak) convergence.

Lemma 2.2. [1] Let C be a nonempty closed convex subset of a Hilbert space H and suppose

that T : C→ H is non-expansive. Then, the mapping I−T is demiclosed at zero.

Let C be a nonempty subset of a normed space E and let x ∈ E. An element y0 ∈C is said to

be the best approximation to x if

‖ x− y0 ‖= d(x,C),

where d(x,C) = infy∈C ‖ x− y ‖. The number d(x,C) is called the distance from x to C or the

error in approximating x by C. The (possibly empty) set of all best approximation from x to C

is denoted by

PC(x) = {y ∈C :‖ x− y ‖= d(x,C)}.

This defines a mapping PC from X into 2C and is called metric (nearest point) projection onto

C. It is well-known that PC is a non-expansive mapping of H onto C.

Lemma 2.3. [23] Let C be a nonempty convex subset of a Hilbert space H and PC be the metric

projection mapping from H onto C. Let x ∈ H and y ∈C. Then, the following are equivalent.

(i) y = PC(x),

(ii) 〈x− y,y− z)〉 ≥ 0, ∀z ∈C.
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Let φ : C×C→ R be a bi-function. Given any r > 0, the operator Jφ
r : H→C defined by

Jφ
r x = {z ∈C : φ(z,y)+

1
r
〈y− z,z− x〉 ≥ 1,∀y ∈C}

is called the resolvent of φ , see [9]. The equilibrium problem for φ is to determine its equilib-

rium points, i.e., the set

EP(φ) = {x ∈C : φ(x,y)≥ 0,∀y ∈C}.

Let J = {φi}i∈I be a family of bi-functions from C×C into R. The system of equilibrium

problems for J is to determine common equilibrium points for J = {φi}i∈I . i.e, the set

EP(J ) = {x ∈C : φi(x,y)≥ 0,∀y ∈C, ∀i ∈ I}.

Lemma 2.4. [9] Let C be a nonempty closed convex subset of H and φ : C×C→ R satisfy

(A1) φ(x,x) = 0 for all x ∈C,

(A2) φ is monotone, i.e; φ(x,y)+φ(y,x)≤ 0 for all x,y ∈C,

(A3) for all x,y,z ∈C, limsupt→0 φ(tz+(1− t)x,y)≤ φ(x,y),

(A4) for all x ∈C, y→ φ(x,y) is convex and lower semi-continuous.

Given r > 0, define the operator Jφ
r : H→C, the resolvent of φ , by

Jφ
r (x) = {z ∈C : φ(z,y)+

1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C}.

Then,

(1) Jφ
r is single valued,

(2) Jφ
r is firmly non-expansive, i.e, ‖ Jφ

r x− Jφ
r y ‖2≤ 〈Jφ

r x− Jφ
r y,x− y〉 for all x,y ∈ H,

(3) Fix(Jφ
r ) = EP(φ),

(4) EP(φ) is closed and convex.

Lemma 2.5. [7] Let C be a nonempty closed convex subset of H and {rn}⊂ (0,1) be a sequence

converging to r > 0. For a bifunction φ : C×C→ R, satisfying conditions (A1)− (A4), define

Jφ
rn and Jφ

r for n ∈ N as in Lemma . Then for every x ∈ H, we have limn→∞ ‖ Jφ
rnx− Jφ

r x ‖= 0.
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Let {Ti}∞
i=1 be a sequence of non-expansive mappings of C into itself, where C is a nonempty

closed convex subset of a real Hilbert space H. Given a sequence {λi}∞
i=1 in [0,1], we define a

sequence {Wn}∞
n=1 of self mappings on C by (3). Then we have the following results.

Lemma 2.6. [20] Let C be a nonempty closed convex subset of a Hilbert space H, {Ti}∞
i=1 be a

sequence of non-expansive mappings of C into itself such that
⋂

∞
i=1 Fix(Ti) 6= /0, {λi} be a real

sequence such that 0 < λi ≤ b < 1,∀i≥ 1. Then

(1) Wn is non-expansive and Fix(Wn) =
⋂n

i=1 Fix(Ti) for each n≥ 1,

(2) for each x ∈C and for each positive integer j, the limit limn→∞Un, jx exists.

(3) The mapping W : C→C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1, ∀x ∈C,

is a non-expansive mapping satisfying Fix(W ) =
⋂

∞
i=1 Fix(Ti) and it is called the W− mapping

generated by T1,T2, · · · and λ1,λ2, · · · .

Lemma 2.7. [24] Let C be a nonempty closed convex subset of a Hilbert space H, {Ti}∞
i=1 be a

sequence of non-expansive mappings of C into itself such that
⋂

∞
i=1 Fix(Ti) 6= /0, {λi} be a real

sequence such that 0 < λi ≤ b < 1,∀i≥ 1. If D is any bounded subset of C, then

lim
n→∞

sup
x∈D
‖Wx−Wnx ‖= 0.

Let K be a nonempty subset of a Banach space X and {xn} be a sequence in K. Consider the

functional ra(.,{xn}) : X → R defined by

ra(.,{xn}) = limsup
n→∞

‖ xn− x ‖, ∀x ∈ X .

The infimum of ra(.,{xn}) over K is to be asymptotic radius of {xn} with respect to K and it is

denoted by ra(K,{xn}). A point x ∈ K is said to be asymptotic center of the sequence {xn} with

respect to K if

ra(x,{xn}) = inf{ra(y,{xn}) : y ∈ K}.

The set of all asymptotic center of {xn} with respect to K is denoted by Ca(K,{xn}). This set

may be empty, a singleton, or infinitely many points.



10 HOSSEIN PIRI

Let K be a nonempty subset of a Banach space X and {xn} be a sequence in K. Consider the

functional ra(.,{xn}) : X → R defined by

ra(.,{xn}) = limsup
n→∞

‖ xn− x ‖, ∀x ∈ X .

The infimum of ra(.,{xn}) over K is to be asymptotic radius of {xn} with respect to K and it is

denoted by ra(K,{xn}). A point x ∈ K is said to be asymptotic center of the sequence {xn} with

respect to K if

ra(x,{xn}) = inf{ra(y,{xn}) : y ∈ K}.

The set of all asymptotic center of {xn} with respect to K is denoted by Ca(K,{xn}). This set

may be empty, a singleton, or infinitely many points.

Lemma 2.8. [1] Let X be uniformly convex Banach space satisfying the Opial’s condition and

K a nonempty closed convex subset of X. If a sequence {xn} ⊂ K converges weakly to a point

x0, then x0 is the asymptotic center of {xn} with respect to K.

The following Lemma will be frequently used throughout the paper. For the sake of com-

pleteness, we include its proof.

Lemma 2.9. [6] Let H be a real Hilbert space.

(i) If F : H → H is a mapping which is both δ -strongly monotone and λ -strictly pseudo-

contractive of Browder-Petryshyn type such that δ ,λ < 1 and δ > 1+λ

2 . Then, I−F is

contractive with constant
√

2−2δ

1−λ
.

(ii) If F : H → H is a mapping which is both δ -strongly monotone and λ -strictly pseudo-

contractive of Browder-Petryshyn type such that δ ,λ < 1 and δ > 1+λ

2 . Then, for any

fixed number τ ∈ (0,1), I− τF is contractive with constant 1− τ

(
1−
√

2−2δ

1−λ

)
.

Notation Throughout the rest of this paper, the open ball of radius r centered at 0 is denoted

by Br. For subset A of H, by coA, we denote the closed convex hull of A. For ε > 0 and

a mapping T : D→ H, we let Fε(T ;D) be the set of ε− approximate fixed points of T , i.e.

Fε(T ;D) = {x∈D :‖ x−T x ‖≤ ε}. Weak convergence is denoted by ⇀ and strong convergence

is denoted by →. F is a mapping on H which is both δ - strongly monotone and λ - strictly
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pseudo-contractive of Browder-Petryshyn type such that δ > 1+λ

2 , and f is a contraction with

coefficient 0 < α < 1. We will also always use γ to mean a number in

(
0,

1−
√

2−2δ

1−λ

α

)
.

3. Main results

Consider a mapping Γn on H defined by

Γn(x) = αnγ f (x)+(I−αnF)TµnWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nx, x ∈ H,n≥ 1,

Using Lemma , Lemma and Lemma , we have

‖ Γn(x)−Γn(y) ‖

=‖ αnγ( f (x)− f (y))+(I−αnF)TµnWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nx

− (I−αnF)TµnWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,ny ‖

≤ αnγα ‖ x− y ‖+

(
1−αn

(
1−
√

2−2δ

1−λ

))
‖ x− y ‖

=

(
1−αn

(
1−
√

2−2δ

1−λ
− γα

))
‖ x− y ‖ .

Since 0 < 1−αn

(
1−
√

2−2δ

1−λ
− γα

)
< 1, it follows that Γn is a contraction. Therefore, by the

Banach contraction principle, Γn has a unique fixed point xn ∈ H such that

xn = αnγ f (xn)+(I−αnF)TµnWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nxn.

Note that xn indeed depends on f as well, but we will suppress this dependency of xn on f for

simplicity of notation throughout the rest of this paper. The following is our main result.

Theorem 3.1. Let S be a semigroup and ϕ = {Tt : t ∈ S} a non-expansive semigroup from H

into H such that Fix(ϕ) =
⋂

t∈S Fix(Tt) 6= /0. Let X be a left invariant subspace of B(S) such

that 1 ∈ X, and the function t → 〈Ttx,y〉 is an element of X for each x,y ∈ H. Let {µn} be

a left regular sequence of means on X. Let J = {φk : k = 1,2, · · · ,M} be a finite family of

bi-functions from H×H into R which satisfy (A1)− (A4) and let {Ti}∞
i=1 be an infinite family

of non-expansive mappings of H into H such that Ti(Fix(ϕ)) ⊂ Fix(ϕ) for each i ∈ N and
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F =
⋂

∞
i=1 Fix(Ti)∩Fix(ϕ)∩EP(J ) 6= /0. Let {αn} be a sequence in (0,1) , {λn} a sequence

in (0,b] for some b ∈ (0,1), {rk,n} sequences in (0,∞). Suppose the following conditions are

satisfied:

(B1) limn→∞ αn = 0,

(B4) limn→∞ rk,n = r̂k, for every k ∈ {1,2, · · · ,M}.

Let Wn be the mapping defined by (3) and for every k ∈ {1,2, · · · ,M} and n ∈ N, let Jφk
rk,n be the

resolvent generated by φk and rk,n in Lemma . If {xn} is the sequence generated by

(7) xn = αnγ f (xn)+(I−αnF)TµnWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nxn, ∀n ∈ N.

Then {xn} converges strongly to x∗ ∈F , where x∗ is the unique solution of the variational

inequality:

〈(γ f −F)x∗,x− x∗〉 ≤ 0, ∀x ∈F .

Proof. By taking J k
n = Jφk

rk,n · · ·J
φ2
r2,nJφ1

r1,n for k ∈ {1,2, · · · ,M} and J 0
n = I for all n ∈ N, we

shall equivalently write scheme (7) as follows:

xn = αnγ f (xn)+(I−αnF)TµnWnJ
M

n xn, ∀n ∈ N.

We shall divide the proof into several steps.

Step 1. The sequence {xn} is bounded.

Proof of Step 1. Let p ∈F . Using Lemma , Lemma and Lemma , we have

‖ xn− p ‖2

= 〈αnγ f (xn)+(I−αnF)TµnWnJ
M

n xn− p,xn− p〉

= αnγ〈 f (xn)− f (p),xn− p〉+αn〈γ f (p)−F(p),xn− p〉

+ 〈(I−αnF)TµnWnJ
M

n xn− (I−αnF)p,xn− p〉

≤ αnγα ‖ xn− p ‖2 +αn〈γ f (p)−F(p),xn− p〉

+

(
1−αn

(
1−
√

2−2δ

1−λ

))
‖ xn− p ‖2 .
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Thus,

‖ xn− p ‖2≤ 1

1−
√

2−2δ

1−λ
− γα

〈γ f (p)−F(p),xn− p〉.(8)

Hence

‖ xn− p ‖≤ 1

1−
√

2−2δ

1−λ
− γα

‖ γ f (p)−F(p) ‖ .(9)

Therefore {xn} is bounded.

Step 2. For every k ∈ {1,2, · · · ,M}, we have limn→∞ ‖ xn− Jφk
rk,nxn ‖= 0.

Proof of Step 2. Let p ∈F since, for each k ∈ {1,2, · · · ,M}, Jφk
rk,n is firmly non-expansive, we

have

‖ Jφk
rk,nxn− p ‖2 =‖ Jφk

rk,nxn− Jφk
rk,n p ‖2

≤ 〈Jφk
rk,nxn− Jφk

rk,n p,xn− p〉

=
1
2

[
‖ Jφk

rk,nxn− p ‖2 + ‖ xn− p ‖2 − ‖ xn− Jφk
rk,nxn ‖2

]
.

It follows that

‖ xn− Jφk
rk,nxn ‖2≤‖ xn− p ‖2 − ‖ Jφk

rk,nxn− p ‖2 .(10)

Moreover set ln = 2〈γ f (xn)−FTµnWnJ M
n xn,xn− p〉 and note that, by using the inequality

‖ x+ y ‖ 62≤‖ x ‖2 +2〈y,x+ y〉,

we obtain

‖ xn− p ‖2 =‖ αnγ f (xn)+(I−αnF)TµnWnJ
M

n xn− p ‖2

≤‖ TµnWnJ
M

n xn− p ‖2 +αnln

=‖ TµnWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nxn− p ‖2 +αnln

≤‖ Jφ1
r1,nxn− p ‖2 +αnln.
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Applying the last to (10), we obtain

‖ xn− Jφ1
r1,nxn ‖≤ αnln

and since {ln} is bounded and limn→∞ αn = 0, we get

lim
n→∞
‖ xn− Jφ1

r1,nxn ‖= 0.

Now we assume that k ∈ {1,2, · · · ,M} and for every k ∈ {1,2, · · · ,k}, limn→∞ ‖ xn−Jφk
rk,nxn ‖=

0. We shall prove that limn→∞ ‖ xn− J
φk
rk,nxn ‖= 0. Indeed

‖ xn− p ‖2 ≤‖ TµnWnJφM
rM ,n · · ·J

φk
rk,n · · ·J

φ2
r2,nJφ1

r1,nxn− p ‖2 +αnln

≤‖ J
φk
rk,n · · ·J

φ2
r2,nJφ1

r1,nxn− p ‖2 +αnln.(11)

Observe that

‖ J
φk
rk,n · · ·J

φ2
r2,nJφ1

r1,nxn− p ‖

≤‖ J
φk−1
rk−1,n · · ·J

φ2
r2,nJφ1

r1,nxn− xn ‖+ ‖ J
φk
rk,nxn− p ‖

≤‖ J
φk−2
rk−2,n · · ·J

φ2
r2,nJφ1

r1,nxn− xn ‖+ ‖ J
φk−1
rk−1,nxn− xn ‖+ ‖ J

φk
rk,nxn− p ‖

...

≤
k−1

∑
k=1
‖ Jφk

rk,nxn− xn ‖+ ‖ J
φk
rk,nxn− p ‖ .

Inequality (11) becomes then

‖ xn− p ‖2

≤

[
k−1

∑
k=1
‖ Jφk

rk,nxn− xn ‖+2 ‖ J
φk
rk,nxn− p ‖

]
k−1

∑
k=1
‖ Jφk

rk,nxn− xn ‖

+ ‖ J
φk
rk,nxn− p ‖2 +αnln.(12)
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It follows from (10) and (12) that

‖ xn− J
φk
rk,nxn ‖

≤

[
k−1

∑
k=1
‖ Jφk

rk,nxn− xn ‖+2 ‖ J
φk
rk,nxn− p ‖

]
k−1

∑
k=1
‖ Jφk

rk,nxn− xn ‖

+αnln.

By our assumption, we have that

lim
n→∞

k−1

∑
k=1
‖ Jφk

rk,nxn− xn ‖= 0.

Then, from the last and condition (B1), we derive

lim
n→∞
‖ xn− J

φk
rk,nxn ‖= 0.

Step 3. limn→∞ ‖ xn−TµnWnxn ‖= 0.

Proof of Step 3. put Mn = 2〈γ f (xn)−FTµnWnJ M
n xn,xn−TµnWnxn〉 and note that

‖ xn−TµnWnxn ‖2 =‖ αnγ f (xn)+(I−αnF)TµnWnJ
M

n xn−TµnWnxn ‖2

≤‖ TµnWnJ
M

n xn−TµnWnxn ‖2

+2αn〈γ f (xn)−FTµnWnJ
M

n xn,xn−TµnWnxn〉

≤‖J M
n xn− xn ‖2 +αnMn.

Moreover,

‖J M
n xn− xn ‖

=‖ JφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nxn− xn ‖

≤‖ JφM−1
rM−1,n · · ·J

φ2
r2,nJφ1

r1,nxn− xn ‖+ ‖ JφM
rM ,nxn− xn ‖

≤‖ JφM−2
rM−2,n · · ·J

φ2
r2,nJφ1

r1,nxn− xn ‖+ ‖ JφM−1
rM−1,nxn− xn ‖+ ‖ JφM

rM ,nxn− xn ‖

...

≤
M

∑
k=1
‖ Jφk

rk,nxn− xn ‖ .
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Thus, by Step 2, condition (B1) and boundedness of Mn, we have

lim
n→∞
‖ xn−TµnWnxn ‖= 0.

Step 4. limn→∞ ‖ xn−Ttxn ‖= 0, for all t ∈ S.

Proof of Step 4. Let p ∈F and set M0 = 1

1−
√

2−2δ

1−λ
−γα

‖ γ f (p)−F(p) ‖ and D = {y ∈ H :‖

y− p ‖≤ M0}, we remark that D is bounded closed convex set, {xn} ⊂ D and it is invariant

under {Jφk
rk,n : k = 1,2, · · · ,M, n ∈ N}, ϕ and Wn for all n ∈ N . We will show that

limsup
n→∞

sup
y∈D
‖ Tµny−TtTµny ‖= 0, ∀t ∈ S(13)

Let ε > 0. By [5, Theorem 1.2], there exists δ > 0 such that

coFδ (Tt ;D)+Bδ ⊂ Fε(Tt ;D), ∀t ∈ S.(14)

Also by [5, Corollary 1.1], there exists a natural number N such that

(15) ‖ 1
N +1

N

∑
i=0

Tt isy−Tt

(
1

N +1

N

∑
i=0

Tt isy

)
‖≤ δ ,

for all t,s ∈ S and y ∈ D. Let t ∈ S. Since {µn} is strongly left regular, there exists N0 ∈ N such

that ‖ µn− l∗t i µn ‖≤ δ

(M0+‖p‖ ) for n≥ N0 and i = 1,2, · · · ,N. Then, we have

sup
y∈D
‖ Tµny−

∫ 1
N +1

N

∑
i=0

Tt isydµn(s) ‖

= sup
y∈D

sup
‖z‖=1

| 〈Tµny,z〉−〈
∫ 1

N +1

N

∑
i=0

Tt isydµn(s),z〉 |

= sup
y∈D

sup
‖z‖=1

| 1
N +1

N

∑
i=0

(µn)s〈Tsy,z〉−
1

N +1

N

∑
i=0

(µn)s〈Tt isy,z〉 |

≤ 1
N +1

N

∑
i=0

sup
y∈D

sup
‖z‖=1

| (µn)s〈Tsy,z〉− (l∗t i µn)s〈Tsy,z〉 |

≤ max
i=0,1,2,··· ,N

‖ µn− l∗t i µn ‖ (M0+ ‖ p ‖)≤ δ , ∀n≥ N0.(16)

By Lemma , we have∫ 1
N +1

N

∑
i=0

Tt isydµn(s) ∈ co

{
1

N +1

N

∑
i=0

Tt i(Tsy) : s ∈ S

}
.(17)
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It follows from (14), (15), (16) and (17) that

Tµny ∈ co

{
1

N +1

N

∑
i=0

Tt isy : s ∈ S

}
+Bδ

⊂ coFδ (Tt ;D)+Bδ ⊂ Fε(Tt ;D),

for all y ∈ D and n≥ N0. Therefore,

limsup
n→∞

sup
y∈D
‖ Tt(Tµny)−Tµny ‖≤ ε.

Since ε > 0 is arbitrary, we get (13).

Let t ∈ S and ε > 0. Then, there exists δ > 0, which satisfies (14). Take

L0 =

[(
1+

√
2−2δ

1−λ
+ γα

)
M0+ ‖ γ f (p)−F(p) ‖

]
.

From (13) and condition (B1), there exists N1 ∈ N such that Tµny ∈ Fδ (Tt ;D), ∀y ∈ D and

αn ≤ δ

L0
for all n≥ N1. By Lemma , Lemma and Lemma , we have

‖ γ f (xn)−FTµnWnJ
M

n xn ‖

≤ γ ‖ f (xn)− f (p) ‖+ ‖ γ f (p)−F(p) ‖+ ‖ F(p)−FTµnWnJ
M

n xn ‖

≤ γα ‖ xn− p ‖+ ‖ γ f (p)−F(p) ‖+

(
1+

√
2−2δ

1−λ

)
‖ xn− p ‖

=

(
1+

√
2−2δ

1−λ
+ γα

)
‖ xn− p ‖+ ‖ γ f (p)−F(p) ‖= L0.

It follows that

αn ‖ γ f (xn)−FTµnWnJ
M

n xn ‖≤ αnL0 ≤ δ ∀n≥ N1.

Therefore, we have

xn = TµnWnJ
M

n xn +αn[γ f (xn)−FTµnWnJ
M

n xn]

∈ Fδ (Tt ;D)+Bδ ⊂ Fε(Tt ;D),

for all n≥ N1. This shows that

‖ xn−Tt(xn) ‖≤ ε, ∀n≥ N1,
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Since ε > 0 is arbitrary the proof of Step 4 is complete.

Step 5. There exists a unique x∗ ∈F such that

limsup
n→∞

〈(γ f −F)x∗,xn− x∗〉 ≤ 0.(18)

Proof of Step 5. Let Q = PF . Then Q(I−F + γ f ) is a contraction of H into itself. In fact, we

see that

‖ Q(I−F + γ f )x−Q(I−F + γ f )y ‖

≤‖ (I−F + γ f )x− (I−F + γ f )y ‖

≤‖ (I−F)x− (I−F)y ‖+γ ‖ f (x)− f (y) ‖

≤

(√
1−δ

λ
+ γα

)
‖ x− y ‖,

and hence Q(I−F + γ f ) is a contraction due to
(√

1−δ

λ
+ γα

)
∈ (0,1).

Therefore, by Banachs contraction principal, PF (I−F + γ f ) has a unique fixed point x∗. Then

using Lemma , x∗ is the unique solution of the variational inequality:

〈(γ f −F)x∗,x− x∗〉 ≤ 0, ∀x ∈F .(19)

We can choose a subsequence {xn j} of {xn} such that

limsup
n→∞

〈(γ f −F)x∗,xn− x∗〉= lim
j→∞
〈(γ f −F)x∗,xn j − x∗〉.

Without loss of generality, we may assume that xn j ⇀ z∗. In terms of Lemma and Step 4, we

conclude that z∗ ∈ Fix(ϕ).

Consider the set of the asymptotic center of {xn j} with respect to H,

Ca(H,{xn j}) = {x ∈ H : limsup
j→∞

‖ xn j − x ‖= inf
y∈H

limsup
j→∞

‖ xn j − y ‖}.

For z ∈Ca(H,{xn j}), we have

limsup
j→∞

‖ xn j − z ‖≤ limsup
j→∞

‖ xn j −Ttxn j ‖, ∀t ∈ S.



SOLUTION SYSTEM OF EQUILIBRIUM PROBLEMS 19

By Step 4, we get xn j → z. It follows from Step 4 and Lemma that z ∈ Fix(ϕ). By our

assumption, we have Tiz ∈ Fix(ϕ) for all i ∈ N and then Wnz ∈ Fix(ϕ), hence TµnWnz = Wnz.

Using Lemma and Step 3, we get

limsup
j→∞

‖ xn j −Wz ‖

≤ limsup
j→∞

‖ xn j −Tµn j
Wn jxn j ‖+ limsup

j→∞

‖ Tµn j
Wn jxn j −Tµn j

Wn jz ‖

+ limsup
j→∞

‖ Tµn j
Wn jz−Wz ‖

≤ limsup
j→∞

‖ xn j −Tµn j
Wn jxn j ‖+ limsup

j→∞

‖ xn j − z ‖

+ limsup
j→∞

‖Wn jz−Wz ‖

≤ limsup
j→∞

‖ xn j − z ‖ .

This is enough to prove that W (Ca(H,{xn j})) ⊂ Ca(H,{xn j}). Using Lemma , Lemma and

Step 2, we have

limsup
j→∞

‖ xn j − Jφk
rk

z ‖

≤ limsup
j→∞

‖ xn j − Jφk
rk,n j

xn j ‖+ limsup
j→∞

‖ Jφk
rk,n j

xn j − Jφk
rk,n j

z ‖

+ limsup
j→∞

‖ Jφk
rk,n j

z− Jφk
r̂k

z ‖

≤ limsup
j→∞

‖ xn j − z ‖ .

This is enough to prove that Jφk
rk (Ca(H,{xn j}))⊂Ca(H,{xn j}).

Since xn j ⇀ z∗ Lemma implies that Ca(H,{xn j})= {z∗}; therefore, z∗ ∈Fix(W )∩(
⋂M

k=1 Fix(Jφk
rk,n)).

In terms of Lemma and Lemma, we conclude that z∗ ∈ (
⋂

∞
i=1 Fix(Ti)) ∩ EP(J ). Since

z∗ ∈ Fix(ϕ); therefore, z∗ ∈F . Applying (19), we have

limsup
n→∞

〈(γ f −F)x∗,xn− x∗〉= 〈(γ f −F)x∗,z∗− x∗〉 ≤ 0.
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Step 6. The sequence {xn} converges strongly to x∗.

Proof of Step 6. Since x∗ ∈F from (8), we have

limsup
n→∞

‖ xn− x∗ ‖2≤ 1

1−
√

2−2δ

1−λ
− γα

limsup
n→∞

〈(γ f −F)x∗,xn− x∗〉.

Then, using Step 5, we have xn→ x∗ as n→ ∞.

Corollary 3.2. Let H be a real Hilbert space H, {Ti}∞
i=1 an infinite family of non-expansive

mapping of H into H, for k ∈ {1,2, · · · ,M} φk a bi-functions from H ×H into R, λ a real

number in [0.1), A a strongly positive bounded linear operator on H with coefficient γ such

that γ > 1+λ

2 , ζ a real number in (0,
1−
√

2−2γ

1−λ

α
). Moreover, let {rk,n}M

k=1, {εn} and λn be real

sequences such that rk,n > 0 and 0 < λn ≤ b < 1. Assume that,

(B1) for every k ∈ {1,2, · · · ,M}, the bifunction φk satisfies (A1)− (A4).

(B2) F = (
⋂M

k=1 EP(φk))∩ (
⋂

∞
i=1 Fix(Ti)) 6= /0.

(B3) the sequence {αn}satisfies limn→∞ αn = 0,

(B4) the sequences {rk,n}M
k=1 satisfy limn→∞ rk,n = r̂k > 0 for every k ∈ {1,2, · · · ,M}.

Let Wn be the mapping defined by (3) and the sequence {xn} generated by

xn = αnζ f (xn)+(I−αnA)WnJφM
rM,n
· · ·Jφ2

r2,n
Jφ1

r1,n
xn, ∀n ∈ N,

Then, the sequence {xn} converges strongly to x∗ ∈F , where x∗ is the unique solution of the

variational inequality

〈(γ f −A)x∗,x− x∗〉 ≤ 0, ∀x ∈F .

Proof. Take ϕ = {I} then, using Lemma we have Tµn = I. Because A is strongly positive

bounded linear operator on H with coefficient γ , we have

〈Ax−Ay,x− y〉 ≥ γ ‖ x− y ‖2 .
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Therefore, A is γ−strongly monotone. On the other hand

‖ (I−A)x− (I−A)y ‖2

= 〈(x− y)− (Ax−Ay),(x− y)− (Ax−Ay)〉

= 〈x− y,x− y〉−2〈Ax−Ay,x− y〉+ 〈Ax−Ay,Ax−Ay〉

≤‖ x− y ‖2 −2〈Ax−Ay,x− y〉+ ‖ A ‖‖ x− y ‖2

Since A is strongly positive if and only if 1
‖A‖A is strongly positive. We may assume, with no

loss of generality, that ‖ A ‖= 1. Therefore,

〈Ax−Ay,x− y〉 ≤‖ x− y ‖2 −1
2
‖ (I−A)x− (I−A)y ‖2

≤‖ x− y ‖2 −1−λ

2
‖ (I−A)x− (I−A)y ‖2

This show that A is λ− strictly pseudo-contractive of Browder-Petryshyn type. Now apply

Theorem to conclude the result.

Corollary 3.3. Let S and T be non-expansive mappings on H with ST = T S, J = {φk : k =

1,2, · · · ,M} a finite family of bi-functions from H×H into R which satisfy (A1)− (A4), {Ti}∞
i=1

an infinite family of non-expansive mappings of H into H such that Ti(Fix(T )∩ Fix(S)) ⊂

Fix(T )∩Fix(S) for each i ∈ N, F =
⋂

∞
i=1 Fix(Ti)∩Fix(T )∩Fix(S)∩EP(J ) 6= /0, {αn} a

sequence in (0,1), {λn} a sequence in (0,b] for some b ∈ (0,1), {rk,n} sequences in (0,∞).

Suppose the following conditions are satisfied:

(B1) limn→∞ αn = 0,

(B4) limn→∞ rk,n = r̂k, for every k ∈ {1,2, · · · ,M}.

Let Wn be the mapping defined by (3) and for every k ∈ {1,2, · · · ,M} and n ∈ N, let Jφk
rk,n be the

resolvent generated by φk and rk,n in Lemma . If {xn} is the sequence generated by

xn = αnγ f (xn)+(I−αnF)
1
n2

n−1

∑
i=0

n−1

∑
j=0

SiT jWnJφM
rM ,n · · ·Jφ2

r2,nJφ1
r1,nxn, ∀n ∈ N.
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Then {xn} converges strongly to x∗ ∈F , where x∗ is the unique solution of the variational

inequality:

〈(γ f −F)x∗,x− x∗〉 ≤ 0, ∀x ∈F .

Proof. Let S = N
⋃
{o}×N

⋃
{o} and let T (i, j) = SiT j for all (i, j) ∈ S. Since Si and T j

are non-expansive for each (i, j) ∈ S and ST = T S. Therefore, ϕ = {T (i, j) : (i, j) ∈ S} is a

non-expansive semigroup on H. Now for each n ∈ N, define µn( f ) = 1
n2

n−1
∑

i=0

n−1
∑
j=0

f (i, j) for each

f ∈ B(S). Then, {µn} is strongly left regular sequence of means on B(S); for more details, see

[22]. Next, for each y ∈ H and n ∈ N, we have

Tµn(y) =
1
n2

n−1

∑
i=0

n−1

∑
j=0

SiT j(y).

Therefore, it follows from Theorem that the sequence {xn} converges strongly, as n→ ∞ to a

point z ∈F , which solves the variational inequality:

〈(γ f −F)x∗,x− x∗〉 ≤ 0, ∀x ∈F .
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