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1. Introduction

One of the most important differential equations in Banach spaces, which is involved in many

sectors of sciences, is the so-called the Abstract Cauchy Problem, and it has the form:

Bu′ (t) = Au(t)+ f (t) ..........................(E)

u(0) = x0

where u is continuously differentiable vector valued function and f is continuous vector

valued function on I ; I is equal to [0,1] or [0,∞) , and both u and f have values in a Banach

space X . In Problem (E), A and B are densely defined linear operators on X . If B is not invertible,
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then Problem (E) is called degenerate problem, otherwise it is called non-degenerate. If f = 0,

then Problem (E) is homogenous, otherwise it is called non-homogenous.

Many researchers were and are interested in this Problem and studied it using a variety of

methods. In the mid-seventies of the last century, Carroll,R.W. and Showalter,R.E. , released an

article about degenerate Abstract Cauchy Problem[4]. In 1996, Thaller, B. and Thaller, S. used

the Factorization of degenerate Abstract Cauchy Problem in a Hilbert space[7]. Favini, A. and

Yagi, A. ,(1999), produced an interesting material on the degenerate Abstract Cauchy Problem

by unifying the methods of semigroups and operational approaches to treat the solvability of

such problem[5]. In 2002, the inverse form of Problem (E) was studied by Al Horani, M.

, where some conditions were put on operators A and B to convert Problem (E) to a non-

degenerate problem[1]. In 2004, Al Horani, M. and Favini, A. discussed the inverse problem

when it is of the second order[2]. In 2010, Ziqan, A.M., Al Horani, M. and Khalil, R. used tensor

product technique to find a unique solution for the Abstract Cauchy Problem under certain

conditions on the operators A and B [8] , [9]. Khalil, R. and Abdullah, L. (2010), used the

same technique and found an atomic solution for certain degenerate and non-degenerate inverse

problems[6].

In this paper we studied the non-homogeneous Abstract Cauchy Problem using the tensor

product technique when the non-homogeneous part of the problem is a two rank function. In

other words f in Problem (E) is equal to f1⊗δ 1+ f2⊗δ 2, where f1, f1 are real-valued continu-

ous functions on I and δ 1,δ 1 are two orthogonal unit vectors in `2, the Banach space consisting

of the square summable sequences. We did prove the existence of a unique solution for this

type of problems when u has the form u1⊗ δ 1 + u2⊗ δ 2, where u1,u2 are real-valued contin-

uously differentiable functions on I, and with some conditions on the operators A and B. Also,

we found an atomic solution for non-degenerate problem of this type of the non-homogeneous

Abstract Cauchy Problem.

Throughout the paper, the homogeneous Abstract Cauchy Problem is

Bu′ (t) = Au(t) ...........................(E1)
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u(0) = x0

and the nonhomogeneous Abstract Cauchy Problem is

Bu′ (t) = Au(t)+ f (t) .................(E2)

u(0) = x0,

where A and B are densely defined linear operators on the Banach space X , u ∈ C1 (I,X) ,

f ∈C (I,X) and x0 ∈ X .

2. Two rank solution of two rank non-homogeneous part of the equation

In this section, we study the problem

Bu′ (t) = Au(t)+ f (t) .............(E2)

u(0) = x0

Where we assume that u(t) = u1 (t)δ 1 + u2 (t)δ 2, and f (t) = f1 (t)δ 1 + f2 (t)δ 2 and we

assume A and B are densely defined closed operators on `2.

One of our main results is the following:

Theorem 2.1 In Problem (E2), let B = I, and u(t) = u1 (t)δ 1 + u2 (t)δ 2, with u1 (t) and

u2 (t) are continuously differentiable functions on [0,∞). Assume further that f1 (t) and f2 (t)

are continuous on [0,∞).Then Problem (E2) has a unique solution.

Proof : Since u′ (t) = u′1 (t)δ 1 +u′2 (t)δ 2, we get

u′1 (t)δ 1 +u′2 (t)δ 2 = u1 (t)Aδ 1 +u2 (t)Aδ 2 + f1 (t)δ 1 + f2 (t)δ 2...........(2.1)
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If [δ 1,δ 2] is an invariant subspace of A, then the restriction of A to [δ 1,δ 2] has a matrix

representation Â =
[
ai j
]

2×2 , where ai j =
〈
Aδ j,δ i

〉
, i, j = 1,2.

Taking the inner product of δ 1 and δ 2 to both sides of (1.1), we get

u′1 (t)〈δ 1,δ 1〉+u′2 (t)〈δ 2,δ 1〉 = u1 (t)〈Aδ 1,δ 1〉+u2 (t)〈Aδ 2,δ 1〉

+ f1 (t)〈δ 1,δ 1〉+ f2 (t)〈δ 2,δ 1〉 ...........(2.2)

And

u′1 (t)〈δ 1,δ 2〉+u′2 (t)〈δ 2,δ 2〉 = u1 (t)〈Aδ 1,δ 2〉+u2 (t)〈Aδ 2,δ 2〉

+ f1 (t)〈δ 1,δ 2〉+ f2 (t)〈δ 2,δ 2〉 ...........(2.3)

Since {δ 1,δ 2} is an orthonormal set, we get from equations (2.2) and (2.3) :

u′1 (t) = u1 (t)a11 +u2 (t)a12 + f1 (t) ...........(2.4)

And

u′2 (t) = u1 (t)a21 +u2 (t)a22 + f2 (t) ...........(2.5)

Now, equations (2.4) and (2.5) represent a non-homogeneous system of two linear differen-

tial equations

U ′ (t) = ÂU (t)+F (t) ...........(2.6)

where U (t) =

u1 (t)

u2 (t)

 and F (t) =

 f1 (t)

f2 (t)

 .
The general solution of system (2.6) Ug is the sum of the homogeneous solution and a par-

ticular solution. The details are as follows:

Now, the corresponding homogeneous system of (2.6) is

U ′ (t) = ÂU (t) ...........(2.7)
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For such Â we have the following cases:

Case 1: Â has distinct real eigenvalues (i.e λ 1 6= λ 2). Then the general solution of system

(2.7) is of the form

Uh (t) = c1eλ 1t
ξ 1 + c2eλ 2t

ξ 2

where ξ 1 and ξ 2 are the corresponding eigenvectors of λ 1 and λ 2, respectively.

Case 2: Â has equal eigenvalues (i.e λ 1 = λ 2 = λ ), then we have the following sub-cases:

Case 2.1: λ has two linearly independent eigenvectors ξ 1 and ξ 2. Then the general solution

of system (1.7) is given by

Uh (t) = (c1ξ 1 + c2ξ 2)eλ t

Case 2.2: λ has a single linearly independent eigenvector ξ . Then the general solution of

system (1.7) is given by

Uh (t) = (c1ξ + c2 (tξ +η))eλ t

where η satisfies equation
(

Â−λ I
)

η = ξ and I is the identity matrix.

Case 3: Â has complex conjugate eigenvalues, λ 1 = a+ ib and λ 2 = a− ib. Let ξ 1 + ξ 2i

and ξ 1− ξ 2i are the corresponding eigenvectors of λ 1 and λ 2, respectively, where ξ 1 and ξ 2

are vectors.

Then the general solution of system (2.7) is given by

Uh (t) = eat [c1 (ξ 1 cos(bt)−ξ 2 sin(bt))+ c2 (ξ 1 sin(bt)+ξ 2 cos(bt))]

Now, to get a particular solution, form the matrix Ψ(t) = (eλ 1tξ 1 : eλ 2tξ 2) which is known

as the fundamental matrix of the system. It is known that the inverse of Ψ exists and a particular

solution to system (2.6) is given by the formula:

Up (t) = Ψ(t)
t∫
0

Ψ
−1 (τ)F (τ)dτ

Furthermore, for any of the above cases the general solution of system (2.6) is of the form

Ug (t) =Uh (t)+Up (t)

Where Uh (t) is the general solution of the corresponding homogeneous system and Up (t) is

the particular solution of the system.
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By the initial condition u(0) = x0, we have

(ξ 1 : ξ 2)

(
c1

c2

)
(δ 1 δ 2) = x0

Since ξ 1 and ξ 2 are linearly independent eigenvectors, then the matrix (ξ 1 : ξ 2) is invertible.

Multiplying (ξ 1 : ξ 2)
−1 to both sides, we get

(
c1

c2

)
(δ 1 δ 2) = (ξ 1 : ξ 2)

−1x0

Taking the inner product of δ 1 and δ 2 to both sides, we get

ci =
〈
(ξ 1 : ξ 2)

−1x0,δ i
〉
, i = 1,2.

So, the Problem has a unique solution.

Now, if [δ 1,δ 2] is not an invariant subspace of A, then Aδ 1 = a11δ 1 + a12δ 2 + a13θ 1 and

Aδ 2 = a21δ 1+a22δ 2+a23θ 2, where θ 1,θ 2 are orthogonal with {δ 1,δ 2} , and a13,a23 not both

are equal to zero.

So, the Problem becomes

u′1 (t)δ 1 +u′2 (t)δ 2 = a11u1 (t)δ 1 +a12u1 (t)δ 2 +a13u1 (t)θ 1

+a21u2 (t)δ 1 +a22u2 (t)δ 2 +a23u2 (t)θ 2 + f1 (t)δ 1 + f2 (t)δ 2......(1.8)

By equating the coefficients of δ 1,δ 2,θ 1 and θ 2 in both sides, we have

a13u1 (t) = 0 and a23u2 (t) = 0

So, we have the following cases:

Case (i) : a13 = 0 and a23 = 0. This case contradicts the assumption on a13 and a23.

Case (ii) : If u1 (t) = 0 and u2 (t) = 0, then u(t) = 0, and hence the Problem has the trivial

unique solution.

Case (iii) : If (a13 = 0 and u2 (t) = 0) or (a23 = 0 and u1 (t) = 0) , then u(t) = ui (t)δ i, for

some i = 1,2.

Then equation (1.6) becomes

u′i (t)δ i = ai1ui (t)δ 1 +ai2ui (t)δ 2 + f1 (t)δ 1 + f2 (t)δ 2...........(2.9)
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By taking the inner product of δ i to both sides of (1.9), we have

u′i (t) = aiiui (t)+ fi (t) ...........(2.10)

Equation (2.10) is first order linear differential equation, and has a general solution of the

form

ui (t) = eaiit

 t∫
0

e−aiiτ fi (τ)dτ + c


And by the initial condition u(0) = x0, we have

ui (0) = c

Then

u(0) = ui (0)δ i = c δ i = x0

Taking the inner product of δ i to both sides, we have

c = 〈x0,δ i〉

And hence the Problem has a unique solution. �

Theorem 2.2 Consider Problem (E2) . Let B2 = B |[δ 1,δ 2]be orthogonally diagonalizable lin-

ear operator with respect to the orthonormal basis {θ 1,θ 2} and corresponding eigenvalues

λ 1,λ 2 such that
〈
Aθ j,δ i

〉
6= 0 for some i, j ∈ {1,2} . Then Problem (E2) has a unique solution.

Proof : Let D = diag(λ 1,λ 2) be the matrix representation of B2 with respect to {θ 1,θ 2} .

Now, if λ 1 6= 0 and λ 2 6= 0, then B2 is invertible and we can use Theorem 2.1, so the problem

has a unique solution.

Assume λ 1 6= 0 and λ 2 = 0. Let u(t) = v1 (t)θ 1+v2 (t)θ 2. Then u′ (t) = v′1 (t)θ 1+v′2 (t)θ 2.

Hence,

v′1 (t)Bθ 1 + v′2 (t)Bθ 2 = v1 (t)Aθ 1 + v2 (t)Aθ 2 + f1 (t)δ 1 + f2 (t)δ 2.

Since Bθ 1 = λ 1θ 1 and Bθ 2 = 0, we have

λ 1v′1 (t)θ 1 = v1 (t)Aθ 1 + v2 (t)Aθ 2 + f1 (t)δ 1 + f2 (t)δ 2...........(2.11)
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Taking the inner product of θ 1 and θ 2 with both sides of (2.11), we get

λ 1v′1 (t) = v1 (t)〈Aθ 1,θ 1〉+ v2 (t)〈Aθ 2,θ 1〉+ f1 (t)〈δ 1,θ 1〉+ f2 (t)〈δ 2,θ 1〉 ...........(2.12)

and

0 = v1 (t)〈Aθ 1,θ 2〉+ v2 (t)〈Aθ 2,θ 2〉+ f1 (t)〈δ 1,θ 2〉+ f2 (t)〈δ 2,θ 2〉 ...........(2.13)

Now putting α ji =
〈
Aθ i,θ j

〉
and β ji =

〈
δ i,θ j

〉
, i, j = 1,2, then equation (2.13) gives the

following cases:

Case (i) : If α22 6= 0, then

v2 (t) =
−(α21v1 (t)+β 21 f1 (t)+β 22 f2 (t))

α22
...........(2.14)

Substituting (2.14) in (2.12) , we get

v′1 (t) = K1v1 (t)+K2 f1 (t)+K3 f2 (t) ...........(2.15)

where K1 =
α11α22−α12α21

λ 1α22
,K2 =

α22β 11−α12β 21
λ 1α22

and K3 =
α22β 12−α12β 22

λ 1α22
.

Then (2.15) is a first order linear differential equation and it has a general solution of the

form

v1 (t) = eK1t

 t∫
0

e−K1t (K2 f1 (τ)+K3 f2 (τ))dτ + c

 ...........(2.16)

Substituting (2.16) in (2.14) , we get

v2 (t) = − 1
α22

(α21eK1t
t

(
∫
0

e−K1t (K2 f1 (τ)+K3 f2 (τ))dτ + c)

+β 21 f1 (t)+β 22 f2 (t))...........(2.17)

From (2.16), (2.17) and the initial condition u(0)= x0, we can determine constant c uniquely

as follows

u(0) = x0 = v1 (0)θ 1 + v2 (0)θ 2

= cθ 1−
1

α22
(α21c+β 21 f1 (0)+β 22 f2 (0))θ 2

By taking the inner product of θ 1 with both sides, we get

c = 〈x0,θ 1〉
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Thus, Problem (E2) has a unique solution.

Case (ii) : If α22 = 0, then we have the following sub-cases:

Case (ii.1) : If α12 6= 0 and α21 6= 0, then from equations (2.12) and (2.13)

v1 (t) =−
1

α21
(β 21 f1 (t)+β 22 f2 (t)) ...........(2.18)

And

v2 (t) =
1

α12

(
λ 1v′1 (t)−α11v1 (t)−β 11 f1 (t)−β 12 f2 (t)

)
...........(2.19)

Substituting equation (2.18) in (2.19) , we get a unique solution for Problem (E2).

Case (ii.2) : If α12 6= 0 and α21 = 0, then in this case we have one equation

λ 1v′1 (t) = α11v1 (t)+α12v2 (t)+β 11 f1 (t)+β 12 f2 (t) ...........(2.20)

So, we need another equation to find v1 (t) and v2 (t) .

Now, by the assumption on A , without loss of generality, we can assume that 〈Aθ 2,δ 1〉 6= 0.

Taking the inner product of δ 1 to both sides of equation (2.11) , we get

λ 1β 11v′1 (t) = v1 (t)〈Aθ 1,δ 1〉+ v2 (t)〈Aθ 2,δ 1〉+ f1 (t)

If γ1i = 〈Aθ i,δ 1〉 , i = 1,2, then the above equation becomes

λ 1β 11v′1 (t) = γ11v1 (t)+ γ12v2 (t)+ f1 (t) ...........(2.21)

From equations (2.20) and (2.21), we have

v′1 (t) = h1v1 (t)+h2 f1 (t)+h3 f2 (t) ,

where h1 =
γ12α11−γ11α12

λ 1(γ12−α12β 11)
,h2 =

γ12β 11−α12
λ 1(γ12−α12β 11)

and h3 =
γ12β 12

λ 1(γ12−α12β 11)
.

This is a first order linear differential equation, and has a general solution of the form

v1 (t) = eh1t

 t

(
∫
0

e−h1t (h2 f1 (τ)+h3 f2 (τ))dτ + c

 ...........(2.22)

By substituting equation (2.22) in (2.21), we determine v2 (t) uniquely.

And again, in equation (2.22) , c = 〈x0,θ 1〉 by the initial condition u(0) = x0.

Case (ii.3) : If α12 = 0 and α21 6= 0, then v1 (t) determine uniquely by equation

(2.18). And by substituting equation (2.18) in (2.21) , we determine v2 (t) uniquely.
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Case (ii.4) : If α12 = 0 and α21 = 0, then v1 (t) determine uniquely by substituting

α12 = 0 in equation (2.22). By substituting equation (2.22) in (2.21) , we determine v2 (t)

uniquely.

Hence, the Problem has a unique solution. �

Now let us consider the case where our function u is of rank one while the non-homogenous

part of the equation (the right hand of the equation) is of rank two. That is to say: u = g⊗ x is

an atom, and the right hand is f1⊗δ 1 + f2⊗δ 2.

Theorem 2.3 Consider Problem (E2) with B = I . Assume u(t) = g(t)x, g ∈C1 (I) be such

that:

(1) There exists some x∗ ∈ X∗ and h ∈C (I) such that 〈g(t)x,x∗〉= h(t).

(2)
(

A− ln
(

h(1)
h(0)

)
I
)−1

exists and bounded.

(3) fi (0) 6= 0, i = 1,2.

Then Problem (E2) has a unique solution.

Proof : If we use the tensor product notation, then the Problem becomes

g′⊗ x+g⊗Ax = f1⊗δ 1 + f2⊗δ 2................(2.23)

Since an atom x⊗ y has infinite number of representations λx⊗ 1
λ

y, then without loss of

generality we can assume that g(0) = 1.

Now, equation (3.1) can be written in the form

g′⊗ x+g⊗Ax− f1⊗δ 1 = f2⊗δ 2................(2.24)

Since the sum of three atoms is equal to an atom, then ,[ ], we have the following cases:

Case (i) : If g′ = λg, then g(t) = ceλ t .But since g(0) = 1, then g(t) = eλ t .

By using condition (1), we get 〈x,x∗〉= h(0) . So

h(t) = 〈g(t)x,x∗〉=
〈

eλ tx,x∗
〉
= eλ t 〈x,x∗〉= eλ th(0)

We conclude from condition (2) ,that h(0) is different from zero. This implies that λ =

ln
(

h(1)
h(0)

)
. Hence, g is determined.
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Now, equation (2.4) becomes

eλ t⊗ (λx+Ax)− f1⊗δ 1 = f2⊗δ 2.................(2.25)

Again the sum of two atoms is equal to an atom, so, [ ], we have the following subcases:

Case (i.1) : If f1 = αeλ t , then equation (2.25) can be written as

eλ t⊗ (λx+Ax−αδ 1) = f2⊗δ 2.....................(2.26)

From equation (2.26), we have equality of two atoms. Consequently, we have

eλ t = ω f2 (t) ..........................................(2.27)

and

(λx+Ax−αδ 1) =
1
ω

δ 2..............................(2.28)

Now, since equation (2.27) is true for all t , then using condition (3) , we get

ω =
1

f2 (0)

From equation (2.28), we get

(λ I +A)x = αδ 1 +
1
ω

δ 2..................................(2.29)

Now, using the value of λ and condition (2) , we get

x = (λ I +A)−1
(

αδ 1 +
1
ω

δ 2

)
..............................(2.30)

Now, x will be determined completely if α is determined.

Since u(t) = eλ tx and by the initial condition u(0) = x0, we have

x0 = x = (λ I +A)−1
(

αδ 1 +
1
ω

δ 2

)
........................(2.31)

Taking the inner product of δ 1 to both sides of equation (3.9) , we get

α = 〈(λ I +A)x0,δ 1〉

And hence, x is determined uniquely.

Case (i.2) : If (λx+Ax) = βδ 1, then we have

x = β (λ I +A)−1
δ 1..................................(2.32)
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So, if β is determined, then x will be determined completely. As in Case (i.1), by the initial

condition u(0) = x0 and also by taking the inner product of δ 1, we get

β = 〈(λ I +A)x0,δ 1〉

Thus, x is determined uniquely.

Case (ii) : If Ax = µx, then equation (2.24) becomes as follows

g′⊗ x+µg⊗ x− f1⊗δ 1 = f2⊗δ 2..............(2.33)

In equation (2.33) , if we take the inner product of x∗ with both sides and use condition (1),

then we get

h′ (t)+µh(t) = f1 (t)〈δ 1,x∗〉+ f2 (t)〈δ 2,x∗〉 ........(2.34)

Since equation (3.34) is true for all t,then µ can be determined by the following:

µ =
1

h(0)
(

f1 (0)〈δ 1,x∗〉+ f2 (0)〈δ 2,x∗〉−h′ (0)
)

Now, equation (2.33) becomes(
g′+µg

)
⊗ x− f1⊗δ 1 = f2⊗δ 2...............(2.35)

We now have the sum of two atoms is equal to an atom. So, we have the following subcases:

Case (ii.1) : If g′+µg=−γ1 f1, then g(t)= e−µt
[

t∫
0
− γ1 f1 (τ)eµτdτ + c

]
. And since g(0)=

1, then c = 1.

Now, g will be determined completely, if µ is determined.

Since g′+µg =−γ1 f1, then g′(t)+µg(t) =−γ1 f1(t). Hence

(g′(t)+µg(t))x = (−γ1 f1(t))x.....................(2.36)

So, if we take the inner product of x∗ to both sides of equation (3.36), we get

〈
g′ (t)x,x∗

〉
+ 〈µg(t)x,x∗〉= 〈−γ1 f1 (t)x,x∗〉 ........(2.37)

Using condition (1) in equation (2.37) , we have

h′ (t)+µh(t) =−γ1 f1 (t)〈x,x∗〉 .....................(2.38)
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If we use condition (3), we find that

γ1 =−
h′ (0)+µh(0)

f1 (0)h(0)

So, from equation (2.35) , x is determined uniquely in the formula

x =
f1 (0)δ 1 + f2 (0)δ 2

g′ (0)+µ

Case(ii.2) : If x = γ2δ 1, then equation (2.35) becomes

(γ2(g
′+µg)− f1)⊗δ 1 = f2⊗δ 2.................(2.39)

Taking the inner product of δ 1 to both sides of equation (2.39), we get

γ2(g
′+µg)− f1 = 0

And then

γ2(g
′(t)+µg(t))− f1(t) = 0.....................(2.40)

Multiplying equation (2.40) by < x,x∗ >, we get

γ2(h
′(t)+µh(t))− f1(t)h(0) = 0.................(2.41)

And since equation (2.41) is true for all t, then

γ2 =
f1(t)h(0)

h′(0)+µh(0)

Then

x =
f1(t)h(0)

h′(0)+µh(0)
δ 1

From equation (2.40), g will be determined uniquely by the form

g(t) = e−µt [

t∫
0

f1(t)
γ2

eµtdt + c]

Where c = 1, since g(0) = 1.
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Now, assume that x = a1δ 1 +a2δ 2 +a3θ , where θ is orthogonal with {δ 1,δ 2} .

Then, by the initial condition u(0) = x0, ai = 〈x0,δ i〉 ,and a3 = 〈x0,θ〉 , where i = 1,2.

Applying the linear operator A on x, we get

Ax = a1Aδ 1 +a2Aδ 2 +a3Aθ

So, assume that α ji =
〈
Aδ i,δ j

〉
, α3i = 〈Aδ i,θ〉 ,α j3 =

〈
Aθ ,δ j

〉
and α33 = 〈Aθ ,θ〉 where

i, j = 1,2.

The Problem becomes

g′ (t)(a1δ 1 +a2δ 2 +a3θ)+g(t)(a1Aδ 1 +a2Aδ 2 +a3Aθ) = f1 (t)δ 1 + f2 (t)δ 2.......(2.42)

Now, to find g we have the following cases:

Case(1) : If a1 6= 0, then taking the inner product of δ 1 to both sides of equation (2.42), we

have

a1g′ (t)+(a1α11 +a2α12 +a3α13)g(t) = f1 (t)

then g(t) = e−k1t
[

t∫
0
ek1τ f1 (τ)dτ + c

]
, where k1 =

a1α11+a2α12+a3α13
a1

and c = 1, since g(0) =

1.

Case(2) : If a1 = 0, then we have the following sub-cases:

Case(2.1) : If a2 6= 0, then taking the inner product of δ 2 to both sides of equation (2.42),

we have

a2g′ (t)+(a2α22 +a3α23)g(t) = f2 (t)

then g(t) = e−k2t
[

t∫
0
ek2τ f2 (τ)dτ + c

]
, where k2 =

a2α22+a3α23
a2

and c = 1.

Case(2.2) : If a2 = 0, then we have the following sub-cases:

Case(2.2.1) : If a3 6= 0, then taking the inner product of θ to both sides of equation (2.42),

we have

a3g′ (t)+a3α33g(t) = 0

then g(t) = ce−α33t , where c = 1, since g(0) = 1.

Case(2.2.2) : If a3 = 0, then x = 0 and this implies that u(t) = 0.

Thus, for all the above cases Problem (E2) has a unique solution. �
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