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Abstract.  In this study, we will characterize the Arf numerical semigroup that is computed in a quotient of an Arf 

numerical semigroup by an positive integer. We will also obtain the one half of this special Arf numerical semigroup 

and give some results about this numerical semigroup.  
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1. Introductıon 

 Let   be the set non-negative integers. A numerical semigroup S  is a subset of   

which contains the zero, is closed under addition and generates   as a group where   denotes 

the set of the integer. From this definition, we can deduce that S  admits a unique minimal 

system of generators  1 ... pn n  , if we obtain the set 1
1

: ,...,
P

i i p
i

S a n a a


 
  
 
   and no proper 

subset of  1 ... pn n   is a system of generators of S  [1].  

\S  is finite, and the largest integer not belonging to S  is known as the Frobenius 

number of S , usually denoted by  F S . We define      # 0,1,...,n S F S S  , where  # A  

denotes the cardinality of any set A . It is also well known that
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  1 2 3 1 2 3, , ,..., 0, , , ,..., , 1, ...p nS n n n n s s s s F S    , where " "    means that every integer 

greater than   1F S   belongs to S ,  n n S  and 1i is s   for 1, 2,..., .i n= [3].   

Let S  be a numerical semigroups and p  be a positive integer. Then  :
S

x px S
p
  

is also a numerical semigroup, called as the quotient of S  by p  .  We say that 
2

S
 is the half of 

the numerical semigroup S  [2]. 

A numerical semigroup S  is an Arf numerical semigroup if for every , ,x y z S  such 

that x y z  , we have that x y z S    [4].  

In this paper, our principal aim is to characterize the Arf numerical semigroup that is one 

half of an Arf numerical semigroup and  give relations between S  and 
2

S
 . 

 

2. Main Results 

 Our first goal in this section is to show that  quotient of an Arf numerical semigroup by 

an positive integer is Arf numerical semigroup. In addition,  we will obtain  Arf numerical 

semigroup 
2

S
 and find  the numbers 

2

S
F
æ ö÷ç ÷ç ÷çè ø

 and 
2

S
n
 
 
 

. Lastly, we will give also the relations 

between S  and 
2

S
 . 

Theorem 2.1. Let S  be an Arf numerical semigroup and p  be a positive integer. Then  
S

p
 is an 

Arf numerical semigroup. 

Proof. We choose all members , ,x y z  in  \ 0
S

p
 such that x y z  . Then it is clear that 

 , , \ 0px py pz S  . Thus we obtain that px py pz S+ - Î , since  S  is an Arf numerical 

semigroup. So,  ( )p x y z S    and 
S

x y z
p

   .  It follows that  
S

p
 is an Arf numerical 

semigroup. 



ON THE ONE HALF OF AN ARF NUMERICAL SEMIGROUP                                      3 

Example 2.2. The numerical semigroup  0,7,14, 21, 27, ...S    is an Arf numerical semigroup. 

So, for  5p   we obtain the set 
 

 0,6, ...
5

S
   which is an Arf  numerical semigroup. 

Theorem 2.3. Let a   and 2a  . If  na
 
is a sequence with general term 

2

1, 1

, 1
n n

if n
a

a if n


 


 , that is

     0 1 21, , , ..., , ...n
na a a a 

 
, then 

      2 2 3 2 0
1 1 2 10, , ,..., ... ... 0, , ,..., ... 1 , ...n n n n

nS x x x x x a t a a t a a t               is an 

Arf numerical semigroup where 0 1 2
1 2 1, , ,..., n

n n nx t x a t x a t x a t
      for t Î  [5]. 

Theorem 2.4.  If the numerical semigroup S  is given as in Theorem 2.3 then  the one half  of S  

is 1 2 10, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
   

. 

Proof.  Let , ,a t n  , 2a   and  t  be positive even integer. Suppose  

1 2 10, , ,..., , , ...
2 2 2 2

r rs s s s
A    

 
. If x A  then we write 

2
is

x   for  1, 2,...,i r  or 
2
rs

x k   for  

1, 2,...k   Therefore we find the equalities 2 2
2
i

i

s
x s   or 2 2 2

2
r

r

s
x k s k

     
 

 . So we 

obtain 2x S . Finally, we have .
2

S
x   

Conversely, if 
2

S
x  , then we have 2x S . Then we can write 

2 2
is S

x     for is SÎ  and for 

1, 2,...,i r .  There is the at least one k  such that 2 2rx s k S     for 2 rx s  .Thus we 

obtain 
2

is
x A  .   

Example 2.5.  If we choose 7, 7a n   and 2t   then we obtain 

7 6 5 4 3 2 12, 2, 14, 98, 686, 4802, 33614 .x x x x x x x        

 So  0,33614,38416,39102,39200,39214,39216,39218, ...S    is an Arf numerical 

semigroup and  we can write  0,16807,19208,19551,19600,19607,19608,19609, ...
2

S
 

 

from Theorem 2.4. 

We will take , ,a t n   where , , 2a t n   in the following  Theorems, Corollaries and proofs. 
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Corollary 2.6.  The one half of the numerical semigroup  

      2 2 3 2 0
1 20, , ,..., ... 1 , ... 0, , ,..., , ...n n n n

rS a t a a t a a t s s s            is as the follows: 

i. If a  is even integer and t  is odd integer, then 1 2 20, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
 

 

ii. If ,a t  are odd integers and n  is even integer, then 2 4 20, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
 

 

iii. If , ,a n t  are odd integers, then 2 4 1 10, , ,..., , , ...
2 2 2 2 2

r rs s s sS     
 

. 

We will avoid proving Corollary 2.6. because it is trivial.  

Proposition 2.7. If S is an Arf numerical semigroup such that 
 

    2 2 3 2 00, , ,..., ... 1 , ...n n n nS a t a a t a a t          then we find  n S n
 
and  

   2 0... 1 1nF S a a t      [5]. 

Theorem 2.8. The Frobenius number of the one half of numerical semigroup 

      2 2 3 2 0
1 20, , ,..., ... 1 , ... 0, , ,..., , ...n n n n

rS a t a a t a a t s s s            is  

 

 

; , , int
2

2 1
;

2

F S
if a n t are positive odd egers

S
F

F S
otherwise


       


 

Proof. Since ,a n  and t   are odd positive integers and from Corollary 2.6.,  we get 

2 4 1 10, , ,..., , , ...
2 2 2 2 2

r rs s s sS     
 

.  Thus we find 
 1 1 1

1 1
2 2 2 2 2

r r r
F Ss s sS

F           
   

.  

For  the  otherwise, the one half of original semigroup is written as one of the 

1 2 10, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
 

 , 1 2 20, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
   

or 

2 4 20, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
 

.  For all three cases, we obtain 1
2 2

rsS
F     
 

. Finally, we have 

   1 1 12
1

2 2 2 2 2
rr r

s F Ss sS
F

         
 

  . 
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Theorem 2.9. The following equalities are true for numerical semigroup 

      2 2 3 2 0
1 20, , ,..., ... 1 , ... 0, , ,..., , ...n n n n

rS a t a a t a a t s s s             . 

      a) If t  is even integer, then  
2

S
n n S   
 

 

b) If a  is even integer and t   is odd integer, then   1
2

S
n n S    
 

 

c) If ,a t  are odd integers and  n   is even integer, then  
 

2 2

n SS
n   
 

 

d) If  , ,a n t   are odd integers, then  
  1

2 2

n SS
n

   
 

.  

Proof. Using Theorem 2.4.  and  Corollary 2.6.,  for the one half of numerical semigroup 

      2 2 3 2 0
1 20, , ,..., ... 1 , ... 0, , ,..., , ...n n n n

rS a t a a t a a t s s s            , the following 

cases hold.   

a) If t  is even integer,  then 1 2 10, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
 

  and 

   1 2 1# 0,1,..., # 0, , ,..., 1 0 1
2 2 2 2 2 2

rs s sS S S
n F r r n S                                      

 
b) If a  is even integer and t  is odd integer, then 1 2 20, , ,..., , , ...

2 2 2 2 2
r rs s s sS    

 
 and 

   1 2 2# 0,1,..., # 0, , ,..., 2 0 1 1
2 2 2 2 2 2

rs s sS S S
n F r n S                                      

 

c) If ,a t  are odd integers and  n   is even integer, then  2 4 20, , ,..., , , ...
2 2 2 2 2

r rs s s sS    
 

 and 

   2 4 2
2 0

# 0,1,..., # 0, , ,..., 1
2 2 2 2 2 2 2 2

r
r n Ss s sS S S

n F                            
           

 

      d) If , ,a n t   are odd integers, then  2 4 1 10, , ,..., , , ...
2 2 2 2 2

r rs s s sS     
 

 and

 
   2 4 1

1 0 1
# 0,1,..., # 0, , ,..., 1

2 2 2 2 2 2 2 2
r

r n Ss s sS S S
n F                             
           

 
Example 2.10.  If we choose  3, 7a n   and 5t   then we obtain the numerical semigroup 
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 0,1215,1620,1755,1800,1815,1820,1825, ...S   . So we find   1824F S   and   7n S  . 

The one half of numerical semigroup S  is  0,810,900,910,913, ...
2

S
  . Moreover

 

 
912

2 2

F SS
F     
 

 and  
  1

4
2 2

n SS
n

    
 

 . 
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