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Abstract. A L̃ U -semiadequate semigroup is a semigroup whose projections commute and in which each L̃ U -

class contains a projection. Let (S,U) be a L̃ U -semiadequate semigroup, where U is the set of projections of S. It

is the fact that each L̃ U -class of (S,U) contains a unique projection. For an element a of (S,U), the projection in

the L̃ U -class containing a is denoted by a∗. Let 1 be an identity of S1, U1 =U ∪{1}. If (S,U) satisfying: (1) for

all e, f in U1 and all elements a in (S,U), (e f a)∗ = (ea)∗( f a)∗; (2) for all elements a in (S,U) and all projections

e≤ a∗, there is an element f in U1 such that e = ( f a)∗, then we say that (S,U) is a L̃ U -ample type B semigroup.

In this paper, we introduce the concept of a proper cover of a L̃ U -ample type B semigroup and prove that any

proper cover for a L̃ U -ample type B semigroup is a proper cover over a monoid. A structure theorem of proper

covers for L̃ U -ample type B semigroups is obtained. This theorem generalizes the result of Li-Wang for right type

B semigroups.
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Let S be a semigroup and E(S) the set of all idempotents of S. Consider a nonempty subset

U ⊆ E(S), namely, the set of projections of S. A relation L̃ U on S is defined by the rule

that aL̃ U b if and only if a and b have the same set of right identities in U , that is U r
a = U r

b ,

where U r
a = {x ∈U |ax = a}. The relation R̃U is defined dually. It can be easily verified that

L ⊆L ∗⊆ L̃ U and R ⊆R∗⊆ R̃U . Clearly, the relation L̃ U on S is a natural generalization of

the well known Green’s relation L and also the Green’s star relation L ∗ , adopted by Fountain

[1], in studying abundant semigroups.

Recall that a semigroup is said to be L̃ U -semiabundant if every L̃ U -class contains a pro-

jection. A L̃ U -semiadequate semigroup is L̃ U -semiabundant and projections commute. Let

(S,U) be a L̃ U -semiadequate semigroup. It is easy to see that each L̃ U -class of (S,U) contains

a unique projection. For an element a of (S,U), the projection in the L̃ U -class containing a is

denoted by a∗.

Right type A semigroups and right type B semigroups were defined and studied by Fountain

[2]. Let T be a right type B semigroup and µL be the largest congruence contained in L ∗, then

T/µL is a right type A semigroup. But some examples in [2] show that they are two different

kinds of semigroups.

Unlike right (left) type B semigroups and type B semigroups, right (left) type A semigroups

and type A semigroups have been extensively studied by many scholars, such as Armstrong [5],

Guo-Xie [6], Guo-Guo [7] and many others. Recently, Li-Wang in [10] give a structure theorem

of proper covers for right type B semigroups. Li-Wang shows that any proper cover for a right

type B semigroup is a proper cover over a left cancellative monoid.

Similar to the definition of right type A semigroups and right type B semigroups in [2].

Now, we define two certain classes of L̃ U -semiadequate semigroups. For a L̃ U -semiadequate

semigroup (S,U), let 1 be an identity of S1, U1 = U ∪{1}. A L̃ U -semiadequate semigroup

(S,U) is called L̃ U -ample type A if ea = a(ea)∗ for all elements a in S and all projections e in

U . A L̃ U -semiadequate semigroup (S,U) is called L̃ U -ample type B if it satisfies: (1) for all

e, f in U1 and all elements a in S, (e f a)∗ = (ea)∗( f a)∗; (2) for all elements a in (S,U) and all

projections e ≤ a∗, there is an element f in U1 such that e = ( f a)∗ . Since the relation L̃ U is
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a natural generalization of the Green’s star relation L ∗, the L̃ U -ample type A (B) semigroups

can be think as a generalization of right type A (B) semigroups.

In this paper, we concentrate on L̃ U -ample type B semigroups. First, we introduce the

concept of a proper cover of a L̃ U -ample type B semigroup and then prove that any proper

cover for a L̃ U -ample type B semigroup is a proper cover over a monoid. A structure theorem

of proper covers for L̃ U -ample type B semigroups is obtained. This theorem generalizes the

result of Li-Wang for right type B semigroups. We adopt the terminology and notations of [11]

and [12].

2. Preliminaries

The object in this section is to introduce the concept of proper covers for L̃ U -ample type

B semigroups. Throughout this paper, a L̃ U -semiabundant semigroups is denoted by (S,U)

unless it is specified otherwise. Before starting our approach, we recall some terminology,

notations and results.

From [12], the following lemma gives a basic property of the relation L̃ U on a L̃ U -semiabundant

semigroups (S,U).

Lemma 2.1. [12] Let (S,U) be a L̃ U -semiabundant semigroup and e be an element of U, then

the following are equivalent for a ∈ (S,U):

(1) aL̃ U e;

(2) ae = a and for all x ∈U, ax = a implies ex = e.

In a L̃ U -semiabundant semigroups (S,U), each L̃ U -class contains some projections of U .

A L̃ U -semiadequate semigroup is L̃ U -semiabundant whose projuctions commute.

Lemma 2.2. Let (S,U) be a L̃ U -semiadequate semigroup and e, f be elements of U. If eL̃ U f ,

then e = f .

Proof. If eL̃ U f , by Lemma 2.1, we have e = e f = f e = f . �

From the Lemma 2.2 we see that if (S,U) is a L̃ U -semiadequate semigroup, then each L̃ U -

class of (S,U) contains a unique projection. For an element a of such a semigroup, the projec-

tion in the L̃ U -class containing a is denoted by a∗.
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A L̃ U -semiadequate semigroup (S,U) is called L̃ U -ample type A if ea = a(ea)∗ for all

elements a in (S,U) and all projections e in U . For a L̃ U -semiadequate semigroup (S,U), let 1

be an identity of S1, U1 =U ∪{1}. A L̃ U -semiadequate semigroup (S,U) is called L̃ U -ample

type B if it satisfies:

(B1) for all e, f in U1 and all elements a in (S,U), (e f a)∗ = (ea)∗( f a)∗;

(B2) for all elements a in (S,U) and all idempotents e≤ a∗ , there is an element f in U1 such

that e = ( f a)∗.

Remark. 1. Dually, we can define the R̃U -semiabundant semigroups, the R̃U - semiadequate

semigroups and the R̃U -ample type A (B) semigroups.

2. Since the Green’s relation L̃ U is a natural generalization of the Green’s star relation L ∗

, the L̃ U -ample type A (B) semigroups can be think as a generalization of right type A (B)

semigroups.

Next, we introduce a congruence σ on a L̃ U -ample type B semigroups (S,U) which has the

property that (S,U)/σ is a monoid and U ⊆ (1(S,U)/σ )(σ
\)−1.

Lemma 2.3. Let (S,U) be a L̃ U -ample type B semigroup, a relation σ on (S,U) is given by

the rule

aσb⇔ exist e ∈U such that ea = eb.

Then σ is a congruence, (S,U)/σ is monoid and U ⊆ (1(S,U)/σ )(σ
\)−1. If τ is a monoid con-

gruence on (S,U) such that U ⊆ (1(S,U)/τ)(τ
\)−1, then σ ⊆ τ . In particular, σ is the minimum

monoid congruence on (S,U) such that U ⊆ (1(S,U)/σ )(σ
\)−1.

Proof. It is clear that σ is an equivalence and right compatible.

[ Since ea = ea for all a ∈ (S,U) and e ∈U , we have aσa. Hence σ is reflexive.

If aσb, then exist e ∈U such that ea = eb. Also, we have eb = ea and so bσa. Hence σ is

symmetric.

If aσb and bσc, then exist e, f ∈U such that ea = eb and f b = f c. Also, we have f ea = f eb

and e f b = e f c. Since e f = f e, we have f ea = f eb = e f b = e f c = f ec and so aσc. Hence σ

is transitive.
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Now, we have already proved that σ is an equivalence. Let a,b,c ∈ (S,U) and aσb, then

aσb⇒ exist e ∈U such that ea = eb

⇒ eac = ebc

⇒ acσbc.

Hence σ is right compatible as required. ]

To prove that σ is a congruence, it remain to show that σ is left compatible. Let a,b,c ∈ S

and aσb, then

aσb⇒ exist e ∈U such that ea = eb

⇒ c∗ea = c∗eb

⇒ ( f c)∗a = ( f c)∗b ((B2))

⇒ f c.( f c)∗a = f c.( f c)∗b

⇒ f ca = f cb (since f cL̃ U( f c)∗)

⇒ caσcb.

Hence σ is left compatible as required. Since projections commute, we have eσ f for any

e, f ∈ U . Let e ∈ U , we claim that eσ is an identity of (S,U)/σ . This is because for any

aσ ∈ (S,U)/σ , we have

aσ .eσ = aσ .a∗σ = (aa∗)σ = aσ ,

and

ea = ea⇒ e.ea = e.a⇒ eaσa⇒ eaσ = aσ ⇒ eσ .aσ = aσ .

Hence U ⊆ (1(S,U)/σ )(σ
\)−1. Up to now, we have already established that σ is a congruence,

(S,U)/σ is a monoid and U ⊆ (1(S,U)/σ )(σ
\)−1. Now, it remain to show that σ is the least

monoid congruence such that U ⊆ (1(S,U)/σ )(σ
\)−1. Let τ be a monoid congruence with U ⊆

(1(S,U)/τ)(τ
\)−1. It is easy to see that for any e∈U , eτ = 1(S,U)/τ . [Since U ⊆ (1(S,U)/τ)(τ

\)−1,

we have eτ = 1(S,U)/τ ]



6 JIANGPING XIAO, YONGHUA LI

Now
aσb⇒ exist f ∈U such that f a = f b

⇒ f τ.aτ = f τ.bτ

⇒ aτ = bτ (since f τ = 1(S,U)/τ)

⇒ aτb.

Hence σ ⊆ τ and so σ is the minimum monoid congruence on (S,U) such that U ⊆ (1(S,U)/σ )(σ
\)−1

as required. �

Let (S,U) and (T,V ) are two L̃ U -semiabundant semigroups. Similar to the definition of L ∗-

homomorphism in [3], a homomorphism φ from (S,U) to (T,V ) is called L̃ U -homomorphism

if for all a,b ∈ S,aφ = bφ implies aL̃ U b and φ |U : U −→V .

Definition 2.1. Let (T,V ) be a L̃ U -ample type B semigroup, some definitions on (T,V ) are as

follow:

(D1) if L̃ U ∩σ = 1(T,V ), then we call (T,V ) is proper;

(D2) if (T,V ) is proper, φ is a L̃ U -homomorphism from (T,V ) onto a L̃ U -ample type B

semigroup (S,U) and for any e ∈U, there exist f ∈ V such that f φ = e, then we call (T,V ) is

a proper cover for (S,U);

(D3) if (T,V ) is a proper cover for (S,U), M is a monoid, (T,V )/σ ∼=M and V ⊆ 1Mα−1(σ \)−1,

where α is an isomorphism from (T,V )/σ onto M, then we call (T,V ) is a proper cover for

(S,U) (over M).

Example 2.1. Let N denote the set of natural numbers and put I = N×N. On S = N ∪ I define

an operation ◦ as follows:

f or m,n,h, j ∈ N,

m◦n = m+n

m◦ (h,k) = (m+h,k)

(h,k)◦m = (h,k+m)

(h,k)◦ (m,n) = (h,k+m+n).

It is readily verified that ◦ is associative, that the idempotents of S are 0,(0,0). Let U =

{0,(0,0)}, it is not difficult to check that the L̃ U -classes of (S,U) are N and I so that (S,U)
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is L̃ U -semiadequate. It is not hard to show that (S,U) is L̃ U -ample type B semigroup but not

proper.

Example 2.2. Let N denote the set of natural numbers and put I = N×N. On S = N ∪ I define

an operation ◦ as follows:

f or m,n,h, j ∈ N,

m◦n = m+n

m◦ (h,k) = (m+h,k)

(h,k)◦m = (h+m,k)

(h,k)◦ (m,n) = (h+m,k+n).

It is readily verified that ◦ is associative, that the idempotents of S are 0,(0,0). Let U =

{0,(0,0)}, it is not difficult to check that the L̃ U -classes of (S,U) are N and I so that (S,U)

is L̃ U -semiadequate. It is not hard to show that (S,U) is L̃ U -ample type B semigroup and

proper.

From [11], a subset A of a semigroup S is called left unitary if for all a ∈ A and s ∈ S, as ∈ A

implies s ∈ A. Dually, we can define right unitary. S is called unitary if it is both left unitary and

right unitary.

Lemma 2.4. Let (S,U) be a L̃ U -ample type B semigroup, if (S,U) is proper, then it is U-

unitary.

Proof. Let e ∈U and a ∈ (S,U). On the one hand, if ea ∈U , then

eae.a = ea = eaa∗ = e.eaa∗ = eae.a∗.

It is clear that eae ∈U and so aσa∗. Then we have a(L̃ U ∩σ)a∗. Since (S,U) is proper, we

have L̃ U ∩σ = 1(S,U) and so a = a∗ ∈U .

On the other hand, if ae ∈U , then a = aa∗σaeσa∗. Hence a(L̃ U ∩σ)a∗. Since (S,U) is

proper, we have L̃ U ∩σ = 1(S,U) and so a = a∗ ∈U . �

3. The main result



8 JIANGPING XIAO, YONGHUA LI

In this section, we will show that any proper cover for a L̃ U -ample type B semigroup is

a proper cover over a monoid. A structure theorem of proper covers for L̃ U -ample type B

semigroup is obtained.

Definition 3.1. Let (S,U) be a L̃ U -ample type B semigroup, M be a monoid. A surjective

relational morphism θ from M to (S,U) is a mapping θ : M −→ 2(S,U) such that:

(A1) mθ 6= /0 for all m ∈M;

(A2) m1θ .m2θ ⊆ (m1m2)θ for all m1,m2 ∈M;

(A3) ∪m∈Mmθ = (S,U);

(A4) 1θ =U;

(A5) |L̃ U
a ∩mθ | ≤ 1 for all m ∈M,a ∈ (S,U);

(A6) mθ ⊆ aσ for all m ∈M,a ∈ mθ .

Theorem 3.1. Let (S,U) be a L̃ U -ample type B semigroup, M be a monoid, θ be a surjective

relational morphism from M to (S,U). Let

T = {(s,m) ∈ (S,U)×M|s ∈ mθ},

and define a multiplication on T by

(s1,m1)(s2,m2) = (s1s2,m1m2).

Then T is a semigroup and

(1) V = {(e,1)|e ∈U} is a subset of E(T ) and V ∼=U;

(2) for all a,b ∈ S,g,h ∈M,(a,g)L̃ V (b,h)⇔ aL̃ U b;

(3) (T,V ) is a L̃ V -ample type B semigroup;

(4) for all (a,g),(b,h) ∈ (T,V ),(a,g)σ(T,V )(b,h)⇔ aσ(S,U)b,g = h.

Proof. Let T be as in the statement of the theorem. It is clearly that T is a semigroup. Now we

proof the rest.

(1) Since θ is a surjective relational morphism, by (A4), we have V is a subsemigroup of T

and T ⊆ E(T ). Then it follows that V ∼=U .

(2) It is benefit for us to prove the following useful Lemma.

Lemma 3.1. Let (a,g) ∈ (T,V ), then (a,g)L̃ V (a∗,1).
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Proof. Let (a,g) ∈ (T,V ). By (1) we have (a∗,1) ∈ V . It is clear that (a,g)(a∗,1) = (a,g).

Now, for any ( f ,1) ∈V if (a,g)( f ,1) = (a,g), then

(a,g)( f ,1) = (a,g)⇒ a. f = a and g.1 = g

⇒ a∗. f = a∗ (since aL̃ U a∗)

⇒ (a∗,1)( f ,1) = (a∗,1).

By the Lemma 2.1 we have (a,g)L̃ V (a∗,1) as required. �

Returning now to the main proof. Let a,b∈ (S,U),g,h∈M. On the one hand, if (a,g)L̃ V (b,h),

by the Lemma 3.1 we have

(a∗,1)L̃ V (a,g)L̃ V (b,h)L̃ V (b∗,1),

and so (a∗,1)L̃ V (b∗,1). By the Lemma 2.2, it follows that (a∗,1) = (b∗,1) and so a∗ = b∗.

Hence aL̃ U b as required.

On the other hand, if aL̃ U b, then a∗L̃ U b∗ and so a∗ = b∗. By the Lemma 3.1, we have

(a,g)L̃ V (a∗,1) = (b∗,1)L̃ V (b,h).

Hence (a,g)L̃ V (b,h) as required.

(3) From (1) and (2) we have (T,V ) is L̃ U -semiabundant and projections commute and so is

L̃ U -semiadequate. Let (e,1),( f ,1) ∈V 1, and (a,h) ∈ (T,V ), where e, f ∈U1. Since (S,U) is

a L̃ U -ample type B semigroup, we have

[(e,1)( f ,1)(a,h)]∗ = (e f a,h)∗ = ((e f a)∗,1)

= ((ea)∗( f a)∗,1) = ((ea)∗,1)(( f a)∗,1)

= (ea,h)∗( f a,h)∗

= [(e,1)(a,h)]∗[( f ,1)(a,h)]∗.

Hence (T,V ) satisfies the condition (B1).

For (e,1) ∈V 1 and (a,h) ∈ (T,V ), where e ∈U1. If (e,1)≤ (a,h)∗ = (a∗,1), then

(e,1) = (e,1)(a∗,1) = (ea∗,1) = (a∗e,1)
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and so e = ea∗ = a∗e. That is e ≤ a∗. Since (S,U) is a L̃ U -ample type B semigroup, there

exist f ∈U1 such that e = ( f a)∗ . And then

(e,1) = (( f a)∗,1) = ( f a,h)∗ = [( f ,1)(a,h)]∗.

As ( f ,1) ∈ V 1 and so (T,V ) satisfies the condition (B2). Hence (T,V ) is a L̃ V -ample type B

semigroup.

(4) Let (a,g),(b,h)∈ (T,V ), if (a,g)σ(T,V )(b,h), there exist (e,1)∈V such that (e,1)(a,g) =

(e,1)(b,h) and so (ea,g) = (eb,h). That is ea = eb and g = h. Hence aσ(S,U)b and g = h.

Conversely, if aσ(S,U)b and g = h, then exist e ∈ U such that ea = eb and so (e,1)(a,g) =

(ea,g) = (eb,h) = (e,1)(b,h). Since (e,1) ∈V , we have (a,g)σ(T,V )(b,h). �

Theorem 3.2. Let (S,U) be a L̃ U -ample type B semigroup, M be a monoid, θ be a surjective

relational morphism from M to (S,U). Let

T = {(s,m) ∈ (S,U)×M|s ∈ mθ},

and define a multiplication on T by

(s1,m1)(s2,m2) = (s1s2,m1m2).

Let V = {(e,1)|e ∈U}, then (T,V ) is a proper cover of (S,U) over M. Conversely, any proper

cover of (S,U) can be constructed in this way.

Proof. From the Theorem 3.1 we have (T,V ) is a L̃ V -ample type B semigroup. Let (a,g),(b,h)∈

(T,V ) and (a,g)(L̃ V ∩σ(T,V ))(b,h). By the Theorem 3.1 (2), (4) we have aL̃ U b and g = h and

so a,b ∈ hθ = gθ . Since θ is a surjective relational morphism, by (A5) we have a = b. Hence

(a,g) = (b,h). That is L̃ V ∩σ(T,V ) = 1(T,V ). Thus (T,V ) is proper.

A mapping β from (T,V ) to (S,U) is defined by the rule as follow:

β : (T,V )−→ (S,U),(a,g) 7−→ a.

It is clear that β is a surjective homomorphism and β |V : V −→ U . On the one hand, if

[(a,g)]β = [(b,h)]β for (a,g),(b,h) ∈ (T,V ), then a = b and so aL̃ U b. By the Theorem 3.1

(2) we have (a,g)L̃ V (b,h). Hence β is a L̃ V -homomorphism from (T,V ) onto (S,U). On the
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other hand, for any e ∈U , by the Theorem 3.1 (1) we have (e,1) ∈V and so [(e,1)]β = e. Thus

(T,V ) is a proper cover for (S,U).

Since σ(T,V ) is the least monoid congruence with V ⊆ (1(T,V )/σ(T,V )
)(σ \

(T,V )
)−1, A mapping α

from (T,V )/σ(T,V ) to M is defined by the rule as follow:

α : (T,V )/σ(T,V ) −→M,(a,g)σ(T,V ) 7−→ g.

We claim that α is a one-one mapping. Let (a,g)σ(T,V ),(b,h)σ(T,V ) ∈ (T,V )/σ(T,V ) and (a,g)σ(T,V )=

(b,h)σ(T,V ). Since (a,g)σ(T,V )(b,h), by the Theorem 3.1 (4) we have aσ(S,U)b and g = h. That

is [(a,g)σ(T,V )]α = g= h= [(b,h)σ(T,V )]α , hence α is a mapping. It is clear that α is surjective.

If [(a,g)σ(T,V )]α = [(b,h)σ(T,V )]α for (a,g)σ(T,V ),(b,h)σ(T,V ) ∈ (T,V )/σ(T,V ). Then g = h and

so a,b ∈ gθ . By (A6), we have aσ(S,U)b. So by the theorem 3.1 (4) we have (a,g)σ(T,V )(b,h).

Thus α is one-one as required. On the one hand, let (a,g)σ(T,V ),(b,h)σ(T,V ) ∈ (T,V )/σ(T,V ),

since

[(a,g)σ(T,V ).(b,h)σ(T,V )]α = (ab,gh)σ(T,V )]α = gh

= [(a,g)σ(T,V )]α.[(b,h)σ(T,V )]α.

Hence α is an isomorphic. On the other hand, since V ⊆ (1(T,V )/σ(T,V )
)(σ \

(T,V )
)−1 and (T,V )/σ(T,V )

∼=

M, we have V ⊆ (1Mα−1)(σ \
(T,V )

)−1. Thus (T,V ) is a proper cover for (S,U) over M. Up to

now we have already established the first statement in this Theorem.

Conversely, let (T,V ) be a proper cover for (S,U). Then there is a L̃ U -homomorphism

φ from (T,V ) onto (S,U) satisfying for any e ∈ U , there exist f ∈ V such that f φ = e. Let

M = (T,V )/σ(T,V ), by the Lemma 2.3 M is a monoid with V ⊆ 1M(σ \
(T,V )

)−1.

A relation morphism θ from M to (S,U) is defined by the rule as follow:

θ : M −→ 2(S,U),g 7−→ gθ ,

for any g ∈M,gθ = {s ∈ (S,U)|exist t ∈ (T,V ),s = tφ , tσ(T,V ) = g}. It remain to prove that θ

is a surjective relational morphism and (T,V )∼= (T ′,V ′), where

T ′ = {(s,g) ∈ (S,U)×M|s ∈ gθ},

V ′ = {e,1) ∈ (S,U)×M|e ∈ 1θ}.
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Let g ∈ M, since the natural morphism σ
\
(T,V )

: (T,V ) −→ (T,V )/σ(T,V ) = M is surjective,

we have gθ 6= /0 and so θ satisfies condition (A1).

Let g,h ∈M,s1 ∈ gθ ,s2 ∈ hθ , then exist u,v ∈ (T,V ) such that

s1 = uφ ,uσ(T,V ) = g,s2 = vφ ,vσ(T,V ) = h.

Then we have s1s2 = (uv)φ ,(uv)σ(T,V ) = gh and so s1s2 ∈ (gh)θ . Hence θ satisfies condition

(A2).

It is clear that ∪g∈Mgθ = (S,U). Hence θ satisfies condition (A3).

Let s ∈ 1θ , then exist t ∈ (T,V ) such that s = tφ , tσ(T,V ) = 1. Note that t∗σ(T,V ) = 1, we

have t(L̃ U ∩σ(T,V ))t∗. Since (T,V ) is proper, we have t = t∗ ∈V . Hence 1θ ⊆U . Conversely,

if e ∈U , then there exist f ∈ V such that e = f φ . Since f σ(T,V ) = 1, we have e ∈ 1θ and so

U ⊆ 1θ . Hence θ satisfies condition (A4).

Now, we prove that (T,V )∼= (T ′,V ′) first. A mapping ψ from (T,V ) to (T ′,V ′) is defined by

the rule as follow:

ψ : (T,V )−→ (T ′,V ′), t 7−→ (tφ , tσ(T,V )),

it is clear that ψ is a surjective morphism. Let t,u ∈ (T,V ) and (tφ , tσ(T,V )) = tψ = uψ =

(uφ ,uσ(T,V )). Then we have tφ = uφ , tσ(T,V ) = uσ(T,V ). Since φ is a L̃ U -homomorphism, we

have tL̃ V u and so t(L̃ V ∩σ(T,V ))u. Since (T,V ) is proper, we have t = u. Hence ψ is an

isomorphism. Finally, since ψ|V =V ′, we have V ∼=V ′ and so (T,V )∼= (T ′,V ′). That is (T ′,V ′)

is proper.

To show that θ satisfies condition (A5). Let s,s′ ∈ gθ and sL̃ U s′, then (s,g),(s′,g)∈ (T ′,V ′).

By the Theorem 3.1 (2), we have (s,g)L̃ V ′(s′,g). Since ψ is a isomorphism, there exist t, t ′ ∈

(T,V ) such that

tψ = (tφ , tσ(T,V )) = (s,g), t ′ψ = (t ′φ , t ′σ(T,V )) = (s′,g).

Then tσ(T,V )t ′ and so there exist e ∈V such that et = et ′. Then

eψ.(s,g) = eψ.tψ = (et)ψ = (et ′)ψ = eψ.t ′ψ = eψ.(s′,g),
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and so (s′,g)σ(T ′,V ′)(s,g). Then we have (s′,g)(L̃ V ′ ∩σ(T ′,V ′))(s,g). Since T ′ is proper, we

have (s′,g) = (s,g) and so s = s′ . Hence θ satisfies condition (A5) as required.

Finally, we show that θ satisfies condition (A6). Let s, t ∈ (S,U) and m ∈M such that s, t ∈

mθ , then we have (s,m),(t,m) ∈ (T ′,V ′). Similar to the prove of θ satisfies condition (A5), we

have (s,m)σ(T ′,V ′)(t,m). Similar to the prove of the Theorem 3.1 (4), we have sσ(S,U)t. Hence

θ satisfies condition (A6) as required.

Remark. 1. By the Theorem 3.1 and the direct part proof of the Theorem 3.2, we have the

following diagram

V //

β

��

(T,V )

β

��

σ
\
(T,V )
◦α

!!
U // (S,U) M

where β is a L̃ U -homomorphism from (T,V ) onto (S,U), σ
\
(T,V )

is a natural morphism and

β |V is an isomorphism.

2. From the converse part proof of the Theorem 3.2, we have the following diagram

V //

φ

��

(T,V )

φ

��

σ
\
(T,V )

!!
U // (S,U) M

where M =(T,V )/σ(T,V ), φ is a L̃ U -homomorphism from (T,V ) onto (S,U), σ
\
(T,V )

is a natural

morphism and φ |V is an isomorphism.

3. Since the relation L̃ U is a natural generalization of the Green’s star relation L ∗, the L̃ U -

ample type B semigroups can be think as a generalization of right type B semigroups. From

this point, this theorem generalizes the result of Li-Wang [10] for right type B semigroups.

The following result is immediate from the Lemma 2.4 and the Theorem 3.2.

Corollary 3.1. A L̃ U -ample type B semigroup has a U-unitary proper cover over a monoid.

Dually, we have the following result.

Corollary 3.2. A R̃U -ample type B semigroup has a U-unitary proper cover over a monoid.
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