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Abstract. This paper is about the classification of the commuting graphs of semigroups to some extent. Let S be a

finite non-commutative semigroup, its commuting graph, denoted by G(S), is a simple graph (which has no loops

and multiple edges) whose sets of vertices are elements of S and whose sets of edges are those elements of S which

commute with other elements i.e. for any a,b ∈ S such that ab = ba for a 6= b. In this paper, we construct some

new types of semigroup of cyclic tree type graphs, sunflower like graphs, almost complete type graphs and almost

ladder type graphs with the help of Monid package of GAP.
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1. Introduction

J. Araujo, Kinyon M. and Konieczny give a construction of band (semigroups of idempotents)

in which one can find semigroup of any knit degree n, for some positive integer n, except

n = 3 [1]. The construction of such type of semigroups also helps for finding semigroups for
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every n ≥ 2 such that the diameter of commuting graph G(S) is n. On the other hand, finding

out the semigroups from a given graph is very important and difficult task in the theory of

semigroups. In our paper, we find the semigroup of complete bipartite graphs, cyclic tree type

graphs, sunflower like graphs, almost complete type graphs and almost ladder type graphs which

will be the partly answer, to some extent, of problem given in [1].

Let S be a finite non-commutative semigroup whose centre is defined as Z(S) = {a∈ S : ab =

ba ∀ b ∈ S}. The commuting graph of a finite non-commutative semigroup is a simple graph

whose sets of vertices are from S−Z(S) and whose sets of edges are the elements of S which

commute with other elements i.e. for any a,b ∈ S such that ab = ba for a 6= b. This paper

is actually the construction of band (of course non commutative) from a some given graph of

different types. For the construction of such type of semigroups, our main focus will be on

semigroup of full transformations T (X) for a finite set X .

Suppose that G(S) is commuting graph of some non-commutative semigroup of S, then

G(S) = (V,E) where V is a finite vertex set and and E is a set of edges such that E ⊆ {{u,v} :

u,v ∈ V f or u 6= v}. If v1,v2, ...vk are the vertices in G(S) then we write a path λ from v1 to vk

as λ = v1− v2− ...vk of length k−1. We say that λ is minimal path if there does not exist any

path shorter than λ .

A undirected graph is graph in which for every pair of vertices there is no need of directional

character unlike as in directed graphs. A tree is an undirected graph in which any two vertices

are connected by exactly one path. Tree has no cycles but we construct such type of semigroups

whose graph is a tree with cycles and we name it cyclic tree type graph. Similarly, we construct

the semigroups of the graphs of sunflower like, ladder type and almost complete type graphs

whose geometry resemblance with the graphs of sunflower, ladder and complete graphs.

Let T (X) be a semigroup of full transformations for a finite set X under the composition of

function. Actually the semigroups T (X) is the set of all functions from a finite set X to X .

In this paper we consider transformations a,b ∈ T (X) and define composition of functions as

(ab)(x) = a(b(x)) from right instead of left i.e (x)(ab) = ((x)a)b for x ∈ X .

For a ∈ T (X) we write image of a by im(a) and kernel of a is defined as

ker(a) = {(x,y) ∈ X×X : a(x) = a(y)}
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and rank of a as rank(a) = |im(a)| Also T (X) has n ideals I1, I2. . . In where 1≤ r ≤ n

Ir = {a ∈ T (X) : rank(a)≤ r}

Clearly the ideal I1 is of rank 1 i.e a constant transformation and hence its commuting graph

will be isolated vertices.

Definition 1.1. Let S be a semigroup and e ∈ S is an idempotent if e2 = e. Also we define the

sets of idempotents in S to be E(S) = {e ∈ S : e2 = e} Now, E(S) may be empty or it may be

E(S) = S. If E(S) = S then S is a band. We construct band in our construction in the monoid

T (X).

Definition 1.2. Let e ∈ T (X) be an idempotent and {A1,A2, ....Ak} be a partition of X and

unique elements x1 ∈ A1,x2 ∈ A2, ..xk ∈ Ak such that for every i we have Aie = {xi}. Then the

set {x1,x2, ...xk} is the image set of e. We use the following notation for e,

e = (A1,x1〉(A2,x2〉 . . .(Ak,xk〉

If e is a constant transformation with image set {x} then we write (X ,x〉 [1].

Definition 1.3. Let e = (A1,x1〉(A2,x2〉 . . .(Ak,xk〉 an idempotent in T (X) and let b ∈ T (X)

then b commutes with e if and only if for every i ∈ {1,2...k} there is a j ∈ {1,2...k} such that

bxi = x j and bAi ⊆ A j [1].

Definition 1.4. Let e, f ∈ Ir be idempotents and suppose there is x∈X such that x∈ im(e)
⋂

im( f )

then e− (X ,x〉− f [1]

Lemma 1.1. Let cx,cy,e ∈ T (X) such that e is an idempotent, then

(1) cxe = ecx if and only if x ∈ im(e)

(2) cxe = cye if and only if (x,y) ∈ ker(e)

Proof (1)Consider cxe = ecx. As cx and e commute with each other, therefore, there should be

at least one element common in the images of cx and e but cx has only one element in the image

set i.e x in im(cx). So x ∈ im(cx)
⋂

im(e) or x ∈ {x}
⋂

im(e). This implies that x ∈ im(e).

Conversely, suppose that x ∈ im(e). We can write it as x ∈ {x}
⋂

im(e). This implies that

x ∈ im(cx)
⋂

im(e). Thus we have cxe = ecx.

(2) Consider cxe = cye. As ker(e) is defined as ker(e) = {(x,y) ∈ X ×X : xe = ye}. Consider

cxe = cz and cye = ct for some t and z inX . Thus cz = ct ⇒ z = t and hence ze = te. Therefore
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(x,y) ∈ ker(e). Conversely, let (x,y) ∈ ker(e) then by def. of ker(e) we have xe = ye, implies

cxe = cye.

2. Semigroup of a cyclic tree type graphs

Definition 2.1. Let X = {yo,y1,y2 . . .yk,s} be a finite set. For i ∈ {1,2,3 . . .k}, consider

the idempotent transformations, ao,a1,a2, . . . ,ak with im(ao) = {yo} and im(ai) = {yi−1,yi}.

Define the kernel classes as;

ker(ao) = X , for i≥ 1, ker(ai) as

Class−1 = {yo,y1,y2 . . .yi−1} and Class−2 = {yi,yi+1,yi+2 . . .yk,s}

Lemma 2.1. Let 1≤ i < j ≤ k then

1) aoai = cyi−1 , aiao = cyo

2) aiai+1 = cyi , ai+1ai = cyi

3) aia j = cy j−1 for j > i+1

4) a jai = cyi

Proof: 1) Since the 1st kernel class of ai is in the im(ao). Therefore ai will map all the ele-

ments of class-1 to cyi−1. Thus aoai = cyi−1. Second part is obvious because ao is a constant

transformation and it will map on some single element of X say, y0. Thus aiao = cyo.

2) Since im(ai) = {yi−1,yi} and im(ai+1) = {yi,yi+1}

ker(ai) is define in def.3.1 as Class−1= {yo,y1,y2 . . .yi−1} and Class−2= {yi,yi+1,yi+2 . . .yk,s}

ker(ai+1) is define as Class−1 = {yo,y1,y2 . . .yi} and Class−2 = {yi+1,yi+2,yi+2 . . .yk,s}

As yi is in class-1 of ker(i+1). So ai+1 will map all elements of class-1 to cyi. Thus aiai+1 = cyi.

Similarly yi is in class-2 of ker(ai). So ai will map all elements of class-2 to cyi. Thus ai+1ai =

cyi. Therefore ai+1ai = aiai+1cyi.

3)As im(ai) = {yi−1,yi} and im(a j) = {y j−1,y j}. Since there is no common element in im(ai)

and im(a j) and ker(a j) is Class−1 = {yo,y1,y2 . . .y j−1}

Class−2 = {y j,y j+1,yi+2 . . .yk,s}. Since im(ai)⊆Class−1 of Ker(a j). So a j will map all the

elements of class-1 to cy j−1.

Thus aia j = cy j−1 for j > i+1

4) Since im(a j)⊆Class−2 of Ker(ai). So ai will map all the elements of class-2 to cyi.
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FIGURE 1. Cyclic Tree Type Graph

3. Semigroup of sunflower like graphs

Definition 3.1. Let X = {yo,y1,y2 . . .yk,s} be a finite set. Consider the idempotents ao,a1,a2 . . .ak

transformations with im(ao) = {yo,y1} and for i ∈ {1,2,3 . . .k} im(ai) = {yi−1,yi,yi+1}.

Now we define the kernel classes of these transformations as;

ker(ao) as Class−1 = {yo,s} and Class−2 = {y1,y2,y3 . . .yk}

For i≥ 1 we define ker(ai) as Class−1 = {yo,y1,y2 . . .yi−1}

Class−2 = {yi,s}, Class−1 = {yi+1,yi+2,yi+3 . . .yk}

Lemma 3.1. Let for i < j we have

1) aiai+2 = cyi+1 = ai+2ai for i ∈ {0,1,2 . . .k}

2) aiai+1 = an1 ai+1ai = an2 for i ∈ {1,2 . . .k}

3) aia j = cy j−1 for j > i+2

4) a jai = cyi+1 for j > i+2

Proof: 1) For i = 0 since im(ao) = {yo,y1} and im(a2) = {y1,y2,y3}. As y1 ∈ im(a0)
⋂

im(a2).

Since y1 lies in class-1 of ker(a2), so a2 map all elements of ker(a2) to y1. Therefore, a0a2 =

cy1, similarly a2a1 = cy1.

For i≥ 1, we have im(ai)= {yi−1,yi,yi+1} and im(ai+2)= {yi+1,yi+2,yi+3} yi+1 ∈ im(ai)
⋂

im(ai+2).

As ker(ai+2) as Class−1= {yo,y1,y2 . . .yi+1}Class−2= {yi+2,s}Class−1= {yi+3,yi+4,yi+5 . . .yk}

Since yi+1) is in the class-1 of ker(ai+2 so ai+2 maps all the elements of class-1 to cyi+1. Thus

aiai+2 = cyi+1 for i∈ {0,1,2 . . .k}. Now as ai+1) is in class-3 of ker(ai), so ai) maps all the ele-

ments of class-3 to cyi+1. Thus ai+2ai = cyi+1 for i ∈ {0,1,2 . . .k}. So aiai+2 = ai+2ai = cyi+1.

2) For i = 0 since y1 is in class-2 of ker(a1) so a1) will map all elements of class-2 to y(2).
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Thus aoa1 = cy2. Similarly, a1a0 = cy2. For i ≥ 1 we have a new transformation say an1 with

im(an1) = {yi,yi+1}. Similarly For i ≥ 1 we have another a new transformation say an2 with

im(an2) = {yi,yi+1}. Hence aiai+1 6= ai+1ai.

3) Since class-1 of ker(a j) contains im(ai). So a j will maps all elements of class-1 to y j−1.

Thus aia j = cy j−1.

4) Since class-3 of ker(ai) contains im(a j). So ai will maps all elements of class-3 to yi+1. Thus

a jai = cyi+1.

FIGURE 2. Sunflower Like Graph

4. Semigroup of almost complete type graphs

Definition 4.1. Let X = {yo,y1,y2 . . .yk,s} be a finite set. Consider the idempotents ao,a1,a2 . . .ak

transformations with im(ao)= {yo,y1}, im(a1)= {y1} and im(a2)= {yo,y1,y2}, for i∈{3,4,5 . . .k},

im(ai) = {yo,y1,y2 . . .yi}.

Now we define the kernel classes of these transformations as; ker(ao) as Class−1= {yo,y2,y3 . . .yk,s}

Class− 2 = {y1}, ker(a1) as ker(a1) = X , ker(a2) as Class− 1 = {yo}, Class− 2 = {y1},

Class−2 = {y2,y3 . . .yk,s} ∀ i≥ 3, we define ker(ai) as

Class−1= {yo,y1}, class−2= {y2}, class−3= {y3}.......... Class−k= {yi,yi+1,yi+2 . . .yk,s}.
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Lemma 4.1. The products are defined as,

1) aiai = ai , aoa1 = cy1 , a1a0 = cy1, aoa2 = ao , a2ao = ao, a1a2 = cy1 , a2a1 = cy1.

2) For 3≤ i < j < k, we have, aia j = ai , a jai = ai.

Proof:

1) First statement is true because generators are idempotents. Since y1 ∈ im(ao)
⋂

im(a1). So

aoa1 = cy1, similarly a1a0 = cy1. Since class-1 and class-2 of ker(a2) is in im(ao) so aoa2 = ao,

similarly a2ao = ao. Finally, since class-2 of ker(a2) is in im(a1) so a1a2 = cy1 and as a1 is

constant therefore a2a1 = cy1.

2) Since for all 3 ≤ i < j the kernel classes of ker(a j) are in the im(ai) therefore aia j = ai

similarly, a jai = ai.

FIGURE 3. Almost Complete Type Graph

5. Semigroup of almost ladder type graphs

Definition 5.1. Let X = {yo,y1,y2 . . .yk,s} be a finite set.Consider the idempotents ao,a1,a2 . . .ak

transformations with im(ao) = {yo,y1}, im(a1) = {y1}.

For i ∈ {2,3,4,5 . . .k} im(ai) = {yi−2,yi−1,yi}.

Now we define the kernel classes of these transformations as;
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ker(ao) as Class−1 = {yo,y2,y3 . . .yk,s}, Class−2 = {y1}, ker(a1) as ker(a1) = X

Now ∀ i≥ 2, we define ker(ai) as

Class−1 = {yo,y1 · · ·yi−2},

class−2 = {yi−1},

Class−3 = {yi,yi+1,yi+2 . . .yi+k,s}.

Lemma 5.1. The products of the above semigroups are defined as;

1) aia1 = cy2 for i ∈ {0,1,2 . . .k}

2) a1ai = cy2 for i ∈ {0,2,3} and a1ai = cyi−1 for i≥ 4

3) For i≥ 2, aiai−1 = ai−1ai and aiai−2 = ai−2ai

Proof: 1) First statement is obvious because a1 is a constant transformation.

2)For i ∈ {0,2,3} the second kernel class of ai lie in the im(a1). Therefore all the elements of

this class will map on cy2 and hence all the the elements of X will map on cy2. Thus a1ai = cy2

Similarly, for i ≥ 4, the first kernel class of ai lie in the im(a1). Therefore all the elements

of this class will map on cyi−2 and hence all the the elements of X will map on cyi−2. Thus

a1ai = cyi−1.

3)For i≥ 2, The first and third kernel classes of ai−1 contains the first and third kernel classes of

ai. Therefore the products of aiai−1 and ai−1ai will be same and thus aiai−1 = ai−1ai. Similarly,

aiai−2 = ai−2ai. During the study of this paper, we observe the following Conjecture.

Conjecture: There are no semigroups of a circle and straight line.

FIGURE 4. Almost Ladder Type Graph
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