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Abstract. In this paper, a generalised solution of the multi-dimensional Black-Scholes partial differential equa-

tion corresponding to basket options is proposed. By certain transformations this equation can be treated as a

generalised heat equation. Semigroup theory techniques are used to discuss its solution.
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1. Introduction

In present financial markets, prices fluctuate continuously. An increasingly common strategy

to keep up with the competition is to use computational models to gain some insight into what

the future holds. As the technology advances, these methods are expected to perform even bet-

ter and are increasingly well trusted by market analysts.

An option is a security giving the ’right’ to buy or sell an asset, subject to certain conditions,

within a specified period of time. An ’European option’ is one that can be exercised only on a
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specified future date. The price that is paid for the asset when the option is exercised is called

the ’exercise price’ or ’strike price’. The last day on which the option may be exercised is called

the ’expiry date’ or ’maturity date’.

At the expiry time T, the value C(x, t) of this option is given by

C(x,T ) = max(x−E,0)

where E is the strike price and x is the price of the underlying asset. Since the holder of this

option is not obliged to exercise it, the value is never less than zero.

The value of an option depends on at least five factors. They are the expiry date, the strike

price, the interest rate, the price of the underlying asset and the voltality of this asset.

The voltality is the standard deviation of the change in value of an asset within a given time

period. This is, in some sense, a measure of the risk associated with the option, since a high

voltality indicates a higher uncertainity of the value of the asset at the expiry date.

A call option is the right to buy a particular asset for an agreed amount at a specified time in

future. A put option is the right to sell a particular asset for an agreed amount at a specified time

in future. Since the theory for the pricing of put option is identical to that of the call option,

apart from the final value, only the latter will be addressed in this paper. For more details on

option theory refer to [5]

2. Black-scholes equation in one dimension

In [1], Black and Scholes proved that under certain natural assumptions about the market

place, the value of a European option C, as a function of the current value of the underlying

asset x and time t, such that C =C(x, t) verifies the following cauchy problem:

∂c
∂ t

+
1
2

σ
2x2 ∂ 2c

∂x2 + rx
∂c
∂x
− rc = 0,x≥ 0, t ∈ [0,T ] (2.1)

with

C(0, t) = 0
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C(x, t)∼ x as x→ ∞

C(x,T ) = max(x−E,0),x ∈ (0,∞) (2.2)

where the value of the call option also depends on the voltality of the underlying asset σ , the

exercise price E, the expiry T and the interest rate r. In this work r and σ are constants. An

explicit solution for (2.1) and (2.2) can be found in [5]

3. Basket option model

A basket option has two or more underlying assets and the holder of the option has the right

to purchase a specified amount of these at the expiry date. When determinig the value of such

an option using the Black-Scholes model, the dimensionality of the problem grows linearly with

the number of underlying assets.

With multi - asset basket options, on a d-dimensional basket of d assets, equation (2.1) and

(2.2) generalises to
∂c
∂ t +

1
2Σd

i, j=1σiσ j pi jxix j
∂ 2c

∂xi∂x j
+ rΣd

i=1xi
∂c
∂xi
− rc = 0

with

C(x1,x2, ......xd,T ) = max(Σd
i=1µixi− k,0)

where xi is the price of the underlying asset i, µi is the weight factor of the asset i and pi j is the

correlation between the assets i and j.

This final value problem is usually transformed into a well-posed initial boundary value prob-

lem by reversion of the time axis T → T−t and an introduction of the boundary conditions on xi

Then we arrive at the multi-dimensional Black-Scholes equation

∂c
∂τ
− 1

2
Σ

d
i, j=1σiσ j pi jxix j

∂ 2c
∂xi∂x j

− rΣ
d
i=1xi

∂c
∂xi

+ rc = 0 (3.1)

with

C(x1,x2, ......xd,0) = max(Σd
i=1µixi− k,0), f or (x1,x2, ......xd) ∈ Rd

+ (3.2)
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4. Reduction of multi-dimension Black-Scholes equation

We consider a transformation which is closely related to principal component analysis of the

covariance matrix [4]

Transform (3.1) into the eigen system of the covariance matrix

Σi j = pi jσiσ j

by an orthogonal transformation with Q bringing Σ to diagonal form

QΣQT = diag(λ i)

To receive this we transform using

z = Qy

and obtain
∂c
∂ t −Σd

i, j=1qi j(r− 1
2σ2

i )
∂c
∂ zi
− 1

2Σd
i=1λi

∂ 2c
∂ z2

i
+ rc = 0

for every (z, t) ∈ Rd× (0,T )

with initial condition

C(z,0) = max(Σd
i=1µie

Σd
j=1q jix j − k,0)

Perform an additional translation

x = z+ tb

with

bi = Σd
j=1qi j(r− 1

2σ2
j )

Take v = ert to arrive at the heat equation

∂c
∂ t
− 1

2
Σ

d
i=1λi

∂ 2c
∂x2

i
= 0, f or every (x, t) ∈ Rd× (0,T ) (4.1)

with initial condition

C(x,0) = max(Σd
i=1µie

Σd
j=1q jix j ,0) (4.2)

Throughout this paper, we will deal with (4.1) and (4.2) which are equivalent to (3.1) and (3.2)

respectively.

5. Main results

In this section, we develop the mathematical tools to charecterize the ’generalized’ solutions

of (4.1) and (4.2) using the theory of Co-semigroups.



SEMIGROUP THEORY APPLIED TO BASKET OPTIONS 5

Define the operators

Ak : D(Ak)→ L2(Rd) and

Bk : D(Bk)→ L2(Rd) by

D(Ak) =
{

f ∈ L2(Rd) : f is absolutely continuous with ∂ f
∂xk
∈ L2(Rd)

}
D(Bk) =

{
f ∈ L2(Rd) : f , ∂ f

∂xk
are absolutely continuous with ∂ f

∂xk
, ∂ 2 f

∂x2
k
∈ L2(Rd)

}
Ak f = ∂ f

∂xk
, Bk f = ∂ 2 f

∂x2
k

Observe that Bk = A2
k

We recall some basic facts in the Co-semigroup theory.

A family T = T (t)t≥0 of bounded linear operators from a Banach space X into itself is called

a Co-semigroup on X if

(i) T (0) = I, the identity operator on X

(ii)T (t + s) = T (t)T (s) for all t,s≥ 0

(iii)limt→0+T (t)x = x for all x ∈ X

The family S(t)t∈R of bounded linear operators from X into itself is called a Co-group, if

(i) S(0) = I, the identity operator on X

(ii)S(t + s) = S(t)S(s) for all t,s ∈ R

(iii)limt→0S(t)x = x for all x ∈ X

The infinitesimal generator of Co-semigroup T = (T (t))t≥0 is the operator given by

D(G) =
{

x ∈ X : limt→0+
1
t (T (t)x− x) ∈ X

}
Gx = limt→0+

1
t (T (t)x− x), x ∈ D(G)

Growth bound of the Co-semigroup T = (T (t))t≥0 is given by

w0(T ) = in f {w ∈ R : ∃ M > 0 : ‖T (t)‖ ≤Meωt}

Further we have

w0(T ) = limt→∞
ln‖T (t)‖

t = in ft>0
ln‖T (t)‖

t
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We also need the following properties of a Co-semigroup T = (T (t))t≥0

(i){λ ∈C : Reλ > ω0(T )} ⊂ ρ(G) and

(ii)R(λ ,G)x =
∫

∞

0 e−λ tT (t)x dt for all x ∈ X

For more details on semi-group theory, refer [3]

Following [2], it can be observed that Ak is the infinitesimal generator of the Co-group

(Sk(t) f )(x) = f (x1,x2, ........xk−1,xk + t, .........xd)

where x = (x1,x2, ........xd) ∈ Rd , t ∈ R

Further Bk is the infinitesimal generator of a Co-semigroup Tk given by

(Tk(t) f )(x) = 1√
4πt

∫
∞

−∞
e
−s2
4t f (x1,x2, ........xk−1,xk + s, .........xd)ds

for all t > 0, x ∈ Rd , f ∈ L2(Rd).

Obviously, the semigroup (Sk(t))t≥0 commute as do the resolvents of Ak and hence of Bk =

A2
k . Then the semigroups (Tk(t))t≥0 generated by Bk, k = 1 to d are analytic and commute. Then

T (t) = T1(λ1, t)T2(λ2, t), .....Td(λd, t) is a bounded semigroup.

Observe that λi, i = 1 to d are the eigen values of ∑i j and are positive.

We now obtain the generalised solution of (4.1)

Theorem 5.1. If f ∈ L2(Rd), then the function given by C f : Rd
+×R→C given by C f (x, t) =

1
2(T (t)) f )(x) is a solution of (4.1)

Proof.

Clearly the domain D(A) of the generator A of (T (t))t≥0 contains

D(λ1A2
1)∩D(λ2A2

2)∩ ......∩D(λdA2
d)

In particular it contains

D0 =
{

f ∈ L2(Rd)/Dα f ∈ L2(Rd) for every multi index α with |α| ≤ 2
}

and for every f ∈ D0 the generator is given by

A f = (λ1A2
1 + .......+λdA2

d) f = ∑
d
k=1 λk

∂ 2 f
∂x2

k
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Since, ∂c f
∂ t = ∂

∂ t (
1
2T (t) f ) = 1

2A f , it follows

∂c f
∂ t −

1
2 ∑

d
k=1 λk

∂ 2c f

∂x2
k
= 0 as desired.

We reproduce Lemma 2.1 of [2] in the generalised form.

Lemma 5.2.

If g∈C(Rd×R+,C) such that
⋃

t≥0 supp(g(., t)) is relatively compact, then the map h : R+→

L2(Rd) defined by h(t) = g(., t) is continuous, where supp(g) denotes the support of the function

g.

Now (ii) of theorem 2.1 of [2] gives the following theorem.

Theorem 5.3.

If c is a solution of (4.1) which has in addition the property that c(., t), ∂c
∂x(., t),

∂ 2c
∂x2 (., t) ∈

L2(Rd) and supt∈[0,a]‖∂ 2c
∂x2 (., t)‖< ∞ for all a > 0, then

c(x, t) = (T (t)c0)(x), (x, t) ∈ Rd
+−{0}×R where c0 = c(.,0)
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