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1. Introduction

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [6], we say
that U dominates an element d of S if for every semigroup 7" and for all homomorphisms
a,B:8 = T, ua = up for all uw € U implies da = df. The set of all elements of S
dominated by U is called the dominion of U in S, and we denote it by Dom(U, S). It
may easily be seen that Dom(U, S) is a subsemigroup of S containing U. A semigroup U
is said to be saturated if Dom(U,S) # S for every properly containing semigroup .S, and
epimorphically embedded or dense in S if Dom(U,S) = S.

A morphism « : S — T in the category of all semigroups is called an epimorphism (epi
for short) if for all morphisms 3,7, a8 = ay implies 5 = 7. Every onto morphism is epi,
but the converse is not true in general. It may easily be checked that o : S — T is epi
if and only if the inclusion map ¢ : S — T is epi and the inclusion map ¢ : U — S is
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epi if and only if Dom(U,S) = S. A variety V of semigroups is said to be saturated if
all its members are saturated and epimorphically closed or closed under epis if whenever
SeVand ¢: S — T is epiin the category of all semigroups, then 7" € V or equivalently
whenever U € V and Dom(U,S) = S, then S € V.

An identity p is said to be preserved under epis in conjunction with an identity 7 if
whenever S satisfies 7 and p, and ¢ : S — T is an epimorphism in the category of all
semigroups, then 71" also satisfies 7 and u; or equivalently, whenever U satisfies 7 and p
and Dom(U, S) = S, then S also satisfies 7 and p.

An identity of the form

T1To Ty = Ty Tjy ** * Ty, (n > 2) (1>

is called a permutation identity, where 7 is any permutation of the set {1,2,3,...,n} and
ir (1 <k <mn) is the image of k under the permutation i. A permutation identity of the
form (1) is said to be nontrivial if the permutation 7 is different from the identity permu-
tation. Further a nontrivial permutation identity zixs-- -z, = x;,x;, - - - x;, is called left
semicommutative if i, # 1, right semicommutative if i,, # n and seminormal if iy = 1 and
i, = n. Clearly, every nontrivial permutation identity is either left semicommutative, right
semicommutative, or seminormal. A semigroup S satisfying a nontrivial permutation i-
dentity is said to be permutative, and a variety V of semigroups is said to be permutative
if it admits a nontrivial permutation identity.

Commutativity [zy = yx], left normality [z122203 = 212325, right normality [xizexs =
xox1x3), and normality [r129w304 = T1237274] are some of the well known permutation
identities.

For any word u, the content of u (necessarily finite) is the set of all variables appearing in
u and is denoted by C(u). An identity u = v is said to be heterotypical if C(u) # C(v);
otherwise homotypical. A variety V of semigroups is said to be heterotypical if it admits
a heterotypical identity.

In [8], Khan gave a sufficient condition for a heterotypical variety to be saturated. He
showed that if a semigroup variety ) admits a heterotypical identity of which atleast one

side has no repeated variable, then V is saturated, and, hence, all heterotypical identities
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whose atleast one side has no repeated variable are preserved under epis in conjunction
with all nontrivial permutation identities. In [7], Khan had shown that all identities are
preserved under epis in conjunction with commutativity. Khan [10] had further shown,
jointly with Higgins [2], that all identities are preserved under epis in conjunction with left
[right] semicommutativity. However Higgins [3] had shown that the identity zyz = yxy is
not preserved under epis in conjunction with the normality identity xxox3x4 = T12320274.
Therefore, it is natural to find those semigroup identities whose both sides contain re-
peated variables and preserved under epis in conjunction with any seminormal identity.
In the present paper, we obtain some results about heterotypical identities (Theorems
3.4, 3.5 and 3.6) towards this goal, by establishing some sufficient conditions for such
identities to lie in this class and thus, extending [11, Theorem 2.1 and 2.4]. However, a
full determination of all such identities to be preserved under epis in conjunction with all

seminormal permutation identities still remains an open problem.

2. Preliminaries

Now we state some results to be used in the rest of the paper. Our notation will
be standard and, for any unexplained symbols and terminology, we refer the reader to
Cliford and Preston [1] and Howie [4]. Further in whatever follows, we will often speak
of a semigroup satisfying (1) to mean that the semigroup in question satisfies an identity

of that type.

Result 2.1 [10, Theorem 3.1]. All permutation identities are preserved under epis.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag The-
orem.

Result 2.2 ([6, Theorem 2.3]). Let U be a subsemigroup of a semigroup S and let d € S.
Then d € Dom(U, S) if and only if d € U or there exists a series of factorizations of d as
follows:  d = apt; = y1a1t1 = yrasts = Yoasts = -+ = Ymom—1tm = Ymom (2)

where m > 1, a; €U (i =0,1,...,2m), y;,t; € S (i1 =1,2,...,m), and
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ap = Y141, Gam—1tm = Qom, Q2i-1t; = 2itip1, YiGzi = Yip102i41 (1 <7 <m—1).

Such a series of factorization is called a zigzag in S over U with value d, length m and
spine ag, a1, . . . , ao;,. We refer to the equations in Result 2.2 as the zigzag equations.
Result 2.3 [9, Result 3]. Let U be any subsemigroup of a semigroup S and let d in
Dom(U, S)\U. If (2) is a zigzag of minimal length m over U with value d, then y;,t; € S\U
forall j =1,2,...,m.

In the following results, let U and S be any semigroups with U dense in S.

Result 2.4 [9, Result 4]. For any d € S\ U and k any positive integer, if (2) is a zigzag
of minimal length over U with value d, then there exist by, by, ..., by € U and dj, € S\ U
such that d = b1by - - - bidy,.

Result 2.5 [9, Corollary 4.2]. If U be permutative, then sxizy - - x5t = sxjzj, - - - 25, t,
for all x1,2z9,...,2 € S, s,t € S\ U and any permutation j of the set {1,2,... k}.
The symmetrical statement in the following result is in addition to the original statement.
Result 2.6 [10, Proposition 4.6]. Assume that U is permutative. If d € S\ U and (2)
be a zigzag of length m over U with value d such that y; € S\ U, then d* = aft} for
each positive integer k; in particular, the conclusion holds if (2) is of minimal length.
Symmetrically, if d € S\ U and (2) be a zigzag of length m over U with value d such
that t,, € S\ U, then d* = y¥ a% for each positive integer k; in particular, the conclusion

holds if (2) is of minimal length.

3. Main results

Proposition 3.1: Let U be a permutative semigroup satisfying a seminormal permuta-

tion identity of a semigroup S such that Dom(U, S) = S. If U satisfies the semigroup iden-

: D1 ,.P2 r o, 41,42 s __ o t1, 2 tn 11 L2 Im

tity Ty Ty XYL Yy Y = wiwy w2y 2y (3)
then (3) also holds for all z1, s, ..., 2, € Sand Y1, Yo, . .., Ys, W1, Wa, . .., Wy, 21, -y 2 iU,
where p1,p2, ..., Pr, q1,G2, - -+, qQs, L1, to, ... tn 1y, 1o, ..., 1, are any positive integers such

that: (r,s,n,m >1);p1 <pa < <Pr1 <Py Qs < @so1- - <@ < q1; 61 <ty < -0 <

tp and by, <y - <y <.



EPIMORPHISMS AND HETEROTYPICAL IDENTITIES-II 5

Proof. Assume that U satisfies the identity (3). Therefore

Py P2 prg @002 00s — qtigt2 ... gtnpliple oLl
Uy Uy Up" V1 Uy Vg™ = ay Ay R
for all wy,us, ..., Uy, v1,09,...,0s,a1,09,...,0,,b1,ba,....b, €U.

We show that (3) is true for all zy,..., 2, € S and yy,...,Ys, W1, ..., Wy, 21,...,2m € U.

For k = 1,2,3,...,r; consider the word a0'a?---z}* of length p; + po + -+ - pp. We

shall show that (3) is satisfied by induction on k, assuming that the remaining elements

Ta1, Thao, - - -, T € U. First for k = 0, the equation (3) is vacuously satisfied. So assume
next that (3) is true for all zy,z9,..., 251 € S and all x, xgy1,..., 2. € U. Then we
shall show that (3) is true for all zy,xs,..., 21,2 € S and all zxyq,..., 2, in U. If

x € U, then (3) is satisfied by inductive hypothesis. So assume that z; € S\ U. As
x € S\ U and Dom(U,S) = S, by Result 2.2, let (2) be a zigzag of minimal length m

over U with value z;. So assume that 1 < k < r.

p1,.pP2 . Pr,91,92 . ,4s

Ty Ty Tr Y1 Yo Ys
—  pP1pP2 | PR, pp o PE PR pr 41,92 g
= I Ty mk—l Ym a2mxk+l eryl Ya yss

( by zigzag equations and Result 2.6)

_ (m)Pk (m)Pk (m)Pk _py  Prt1 pr, A1, 42 s
= 2Ym -’ by by agn,m o xlryftyst oyl

(by Results 2.4 and 2.5 for some b{™, ... 0™ € U
and y,(nm) € S\U as y,, € S\U and ag,, = dom_1tm

with ¢, € S\U and where z = 2" 25> - - - 2}7*7")

(m)Pk  (m)7,(m)P1 (m)Prk=1 pp  Pk+1 Pr o 41, 42 s
= Zym /l}( )bl “ e bk_l azmxk+1 DY xr yl y2 .o e ys

(by Result 2.5 as y”, t,, € S\U and where

bgm)pk—m o b(m) pk_pk—l)

vl = k—1

g Gt g
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(as a2, _1tm = Qom_102m—1tm = Q2m_102m € U, yﬁnm), tm € S\ U and U satisfies (3))

(m)PE_ (m (m)Pr—1_pg Pk, Pk+1 q1, 92
ZYm o )bl by a1 (@2m—1tm) Tyl o ATYy Yo v Yd

(by Result 2.5 as y”, t,, € S\U)

(m)Pk; (m)Pk (m) Pk _pp Pk+1 a,
ZYm by by a2m_1(a2m,1tm)pkxk+1 cealryryy e yd

(by Result 2.5 as y&" ¢, € S\U and as v = p™™ .. bgf)lpk_pkfl)

zyPrabt, y(aom—1tp)Pea - abryltyd - - y2 (by Result 2.5 as yom b € S\U)

r

z(ymagm,l)p’“(agm,ltm)pkxi’fﬂl cexPryltyd® ooy (by Result 2.5 as Y, ty, € S\ U)

T

2(Ym—102m—2)"* (agm—1tm)Peat - alryf'ys® - - y2 (by zigzag equations)
zyﬁf_lagfn_z(agm,ltm)pkxz’ff e aPryfty® ooy (by Result2.5 as ym,_1,tm € S\U)

—1)Pk —1)Pk —1)Pk
DRI b Y GBE (gmatPPp  alryyg® -y (by Results

Y T
2.4 and 2.5 for some 6™V, . .. ,b,(;le) € U and yﬁ,’j:” € S\U as ym_1,tm € S\U)

m—1)Pk m—1)P1 m—1)Pk—1
'ﬁn—l ) fU( l)bg ) .« b](g—l ) (a2m_2a2m_ltm)pkxii+ll “ e x?ryglng e ySS (by

Result 2.5 as 4", t,, € S\U and where p(m=1 = p{m=DPFp(m DPETEL

m—1 >

zY

(m—=1)Pk (1) (m—1)P1 (m—1)Pk—1 Pk+1 q1,,92
2y D by (@2m—3a2m—1tm ) Tl - 2y yy® - -yl

(as aom-—302m—1tm = Qam-_3a2,m € U and U satisfies (3))

m=1)Pk (15 (m—1)P1 m—1)Pk—1
aypr oD VT R (gt PRy Ry
(by Result 2.5 as 4" t,, € S\U)

m—1)Pk - (m—1)Pk m—1)Pk
o BT B T B (Grt)PR  alryTy y
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(by Result 2.5 as v(m=1 = p{m=D"71 bgﬁ;l)pk_pk_l nd "7V t,, € S\U)

Zy%—laglﬁn—s(a2m71tm)pklefl s alryftyg? -
(by Result 2.5 as ¢V t,, € S\U)

2(Ym—102m—3)"* (Qgm—1tm)PEa - - alryTys? -

(by Result 2.5 as y,—1,tm € S\U)

2(Ym—2a2m—1)P* (@gm—1tm)Peat - alryf'ys® - - - y2 (by zigzag equations)

Pk Pk Pk APE+1 Dr, 91,492 .
2oy g (Aam—1tm )Py Y

(by Result 2.5 as y,—9,t, € S\U)
Zypkaik (G/melt )pk$£i+l . $p7‘y<111 qu . e yss

Bl L N A P L0 L x’”yquSZ- & (by Results

2.4 and 2.5 for some b§2), . b,(f_)l € U and y2 € S\U as yo,t,, € S\U)

Zy§2)7’kv(2)b§2)l’1 "' bl(f—)lpkilai%%m—lt )”kxﬁi“ e alryftys? -y (by
Result 2.5 as y, t,, € S\U and where v® = p®" " ... b}g?_)lp’“*p’“l)

Pk p1 Pk—1
2y @B B2 (aataat )Pty g

(by Result 2.5 as y§2),tm e S\U)

pk+1 q1,,92

2)Pk 2)P1 2) Pk—1
zy; ) 0(2)bg ) v bl(c—)l (agagm 1t ) k+ : :Epryl Yo~ oo ygs

(as azagm_1tm = asao, € U and U satisfies (3))

- Pk pk+1 q1 .92
as® (agm—1tm)P* Ty - alry ity - -yl
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(by Result 2.5 as 432, t,,, € S\U)

Z’y§2)pk b§2)Pk - bl(f_)lpkagk <a2m71t )pkxiiﬂ . xpryih yqz —
(by Result 2.5 as yf),tm € S\U and v® = bg )Pe—PL b}(f_)lpk_pk—l)

2y5r af (a1t )Pray - alryfyd - y% (by Result 2.5 as 2t € S\U)

2(y2a3)P* (Agm—1tm )PEaps ) - alryitys® - - y2 (by Result 2.5 as ys, t,, € S\U)

2(y1a2)P* (Agm—1tm )PEaps - alryitys? - - - y2 (by zigzag equations)

2 A (Agm—1 b )Pea - aPry iy - - - y8 (by Result 2.5 as yi, t, € S\U)
zygl)pkbgl)pk e bg_)lpkag’“ (agm,ltm)pkmi'ff ceaxbryltyd® oo y% (by Results 2.4 and

2.5 for some b(l) ...,b,glll € U and ygl) € S\U as y1,t,, € S\U)

Pk p1 Pr—1
g OB D 6B (agm ot )”’fﬂ:ii“- calryltys -yl

(by Result 2.5 as y\", t,, € S\U and where v = p{0" " ... bl(cl_)lp’“fp’“*l)

zygl)pkv(l)bgl)pl e b,(ﬁl_)lpkfl(azam—lt )p’“ﬂlefl coeabryftyd -yl
(by Result 2.5 as gt b, € S\U)
zy%l)pkv(l)bgl)pl e b;(ﬂl,)lphl(a1a2m—1tm)pkﬂlerf coeabryftydt -yl

(as agom—1tm = asas, € U and U satisfies (3))

zy(l)pk11(1)l)(l)p1 . --b,(j,)lp'“ lapk(an 1 )P Py Pyl g

k+1
(by Result 2.5 as yg Jtm € S\U)

Pk . (1)Pk Pk
O U (ot PRy g

(1)Pk—P1 b(l) Pk—Pk—1

(by Result 2.5 as y§1),tm € S\U and v = b} b )
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= zyf’“alf’“(am,ltm)pkxﬁf e xPryftyd® .oy (by Result 2.5 as ygl), tm € S\U)

T

_ p1,.p2 . ,.Pk-1,DPk Dk Pk PR+l pr, 91,92 0 Q _ p1,p2 . Pk-1
= ai'zh Lyt al (agm—1tm) o abryltyg % (as z = o' ah .7
—  pP1P2 PRl Pk PR+l | prg 1,42 o
= X7 Ty Ty_q (y1a1G2m—1tm) Thi1 "Y1 Y 5

(by Result 2.5 as y;, t,, in S\U)

_ p1,.p2 . ,.PE-1 Pk PR+ pr,d1,92 0 q : :
= l‘l .TQ mk 1 (a/(]agm) :Ij'k, 1 l‘rryl y2 Ss (by the 718722 equathnS)
t1, 2 tn L1 L2 l

(by inductive hypothesis as agagy, € U)

as required. O

Proposition 3.2: Let U be a permutative semigroup satisfying a seminormal permuta-
tion identity of a semigroup S such that Dom(U, S) = S. If U satisfies the semigroup iden-
tity (3), then (3) also holds for all xy, ..., 2., y1,...,ys € Sand wy, ..., Wy, 21, ..., 2y in U,
where p1,po, ..., Drq1, G2, - -5 qQs; L1 ta, oyt Iy, Loy .. Ly, are any positive integers such
that: (r,s,n,m > 1);p1 <pa < <pr1 <pry @5 < g1 << qu, by Stg <0 <
t, and 1, < l,_1--- <ly <.

Proof: We show that (3) is true for all @1, zo, .. ., 2, Y1, Y2, - . ., ys € S and wq, wa, . . ., Wy,
21,22, .., 2m € U. For k = 1,2,3,...,s; consider the word y{'ys*---y{* of length
¢1 + g2+ - -+ qr. We shall show that (3) is satisfied by induction on k assuming that the
remaining elements Y1, Yg+2, ..., ¥s in U. For k = 0, (3) trivially holds. So assume that
(3) is true for all xy, 2o, ..., 2r, Y1, Y2, ..., yYp—1 € S and for all yx, yxi1,...,ys € U. Then
we shall show that (3) is true for all x1, z9,..., 2, y1,%2,...,yx € S and ygi1,...,ys € U.
If yx € U, then (3) holds by inductive hypothesis. So assume that y, € S\U. As y, € S\U
and Dom(U, S) = S, by Result 2.2, let (2) be a zigzag of minimal length m over U with
value yi. So assume that 1 < k < r. As the equalities (4) and (5) follow by Results
2.4 and 2.5 for some bgjl, .0 e U and tgl) in S\ U as y1, t; € S\ U and where
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z=ypt - y® and wV) = b,glq’c_qkﬂ BT e have
cealryltyyt eyl
atal? - abrylt oy adi ity i - - y8 (by zigzag equations and Result 2.6)
oty g g b BT (4)
aP B Py -y,j‘“_‘fa%’“b,ﬁf’““ . bglﬂsw(l)tgl)qkz (5)
AR Y (yla%)ka§€21Qk+l TP

(by inductive hypothesis as yya3 = y1a1a; = apa;, € U)
_ 1) Qk+1 1)9s
wytah byt -yZ’“_f (ylal)%a({kbéll - 'bg " w 1z

(by Result 2.5 as yj, tgl) e S\U)

R s S L ax  qr,(1)
Ly Ty T Yp Y1 (y1a1) aq ka

(by Result 2.5 and definition of w()

* bgl)thgl)QkZ

P1,.P2 | pr, 4l 9k—1 Ak 49k
Ty Ty " Yy Ypy (yrar)®afti 2

(by Result 2.5 as b,(:ll% e bgl)%tgl)% = t9*)

P1,.D2

atab? e abrylt . -yzk_’f (y1a1)% (art1)™z (by Result 2.5 as y1,t; € S\U)

ot ah? o abry? oy (yrag )9k (agte) ™ 2 (by zigzag equations)

bt abry?t oy (yrar ) ad td 2 (by Result 2.5 as yp, o € S\U)

P1,.P2

ot bt abrylt oy (yragag) 13 2 (by Result 2.5 as yp, o € S\U)

p1,.P2 dk—1

q q q
'Tl x2 e xﬁrygl . yk—l (ylalCLZ)qkb]({i)_l k e ng) kt§2) kZ
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where the last equality follows by Results 2.4 and 2.5 for some b,(izl, e ,bgl) in U, tg) in

S\U as vy, to € S\U.
» . 2
As the equalities (6), (7) and (8) follow by letting w® = b,gll

k—Ar+1 (2)Tk—0s
R AS

and by

Result 2.5 as y1, 15 € S\ U; by Result 2.5 as yy, t$” € S\ U: and by Result 2.5 and the

definition of w® respectively, we have

Sl gy ey
= gtah? . gbry®
= gtah? . abry®
= ztah? . gbry®

q ak (2)4
.. 'y;qf:f (y1&1a2)qkb;(f+)1 ko ng) kt;Q) kz
. dk s qs
.. 'yZ’i_f (y1a1a2)qkb§21 kL bg2) w(2)t§2) . (6)
S T (y1a1a3)qkbglqk+l o ng)qu(z)tg)qkz

(by inductive hypothesis as yja1a3 = apaz € U)

b1,.p2

P1,.D2

= 1‘11‘2...

P1,,.D2

= x11‘2..

P1,.D2

= xle"'

P1,.D2

= x1x2...

P1,.p2

= .T1$2-~

P1,,.p2

= xlxz...

p1,.p2 |

.. xfryfl ..
abryf’ -
~aryi -
abryf' -
byt -
Pyt gy (yran) ™ (agm-1tm) ™ 2 (by zigzag equations)

Dr g4t |,
IrTyl

copPrgdt
IrTyl

q qs q
U ) P, Y )
_ 2) 4k 24k  (2)9k
'y;qf_f(ylal)qkagkb;cll e 'bg ) tg 2 (8)

Y (yrar )™ adk 3 2 (by Result 2.5 asb,(jzlqk e ng)qktg)qk = ti¥)

9k . dk t‘]k

: yi’i‘f (y1a1> Aom—3lm—17

Y (yia) ™ (agm—stm—1)"z (by Result 2.5 as yy,¢,,—1 in S\ U)

¢

T (yray) ™ adk, ot% 2 (by Result 2.5 as yy,t,, € S\ U)

Y (y1a1am—2) ¥ 2 (by Result 2.5 as y1, by, € S\ U)
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_ P1 .02 q1 dk—1 qr 1. (m) I (m)9k  (m)dk
= T3 Ty - TYp o Yp g (Y101G2m—2) bk+1 - bs m- 2

where the last equality follows by Results 2.4 and 2.5 for some b,(:i)l, ce b € U and

ti™ € S\ U as y1,tm € S\ U. As the equality (9) follows by Result 2.5 as yy, t%" € S\ U

Qk—k+1 Ik —4r

and where w(™ = bm)l AL , we have
D1 ,.P2 pr, 41, 42 q

ml 1'2 ...:Ur"'yl y2 ...yss

_  .P1..P2 ¢ qk—1 qr j,(m) e+l (m)9s  (m)(m)
e 3’;1 x2 e xnyl e yk—l (y1a1a2m_2) bk—l—l e bS w( ) m z (9)
_  .P1..P2 ¢ qk—1 ap j,(m) e+l (m)9s (m) 9k
=y’ Y gy (Jaasm1) b e bs w™tn ™ 2

(by inductive hypothesis as y1a1a2,—1 = apazm—1 € U)

_ m qk m qdk m qk
=y (g )BT (10)
= aftad? - 'ﬁrygl e -yZ’i‘f (ylalazm—l)qkt%Z
(by Result 2.5 as b,(ﬁ)l% oI qany
= aftal - abryl -yt (et agm—1te) T Y -y

( by Result 2.5 and the definition of z)

— P1,..P2 q1 qk—1 qk 3 4
= a'ah? - alrylt oy T (aoaom) Yk - - - ys% (by zigzag equations)
= wiwk . w2l 2 (by inductive hypothesis as agagm € U),

where equality (10) follows by Result 2.5 as y, tm e g \U and the definition of w™.

Therefore
P1,,.P2 pr, 41, ,92 qs __ ., t1,, 12 tn 1 o l
Ty Ty T Yp Yoo YT = W Wy Wy Ry 2y 2y
holds for all x1, 2o, ... 20, Y1, Y2, ..., ys € S and wy, wo, ..., Wy, 21,22, ..., 2m € U. O

By arguments similar to the proofs of Propositions 3.1 and 3.2, we may prove the following:
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Proposition 3.3: Let U be a permutative semigroup satisfying a seminormal permuta-
tion identity of a semigroup S such that Dom(U, S) = S. If U satisfies the semigroup iden-
tity (3), then (3) also holds for all 1, xa, ..., 2, Y1, Y2, ..., ys € Uand wy, ..., Wy, 21, .., 2m
in S, where py,pa2, ..., Dryq1, G2, - - -, Qs, L1, oy ooty Uiy Lo, . .. 1, are any positive integers
(rosmm>1)pr <pp<- <P 1 <P s <1 S @< qr, th <t <o <ty and
Iy <y <l <y

Now using Propositions 3.2 and 3.3, we have the following:

Theorem 3.4: All semigroup identities of the form

Syl g = wfu sl
are preserved under epis in conjunction with all seminormal permutation
identities for all positive integers p1,po, ... Pryq1,q2, - - - Qsy t1,toy oty b1, 1oy ooyl

(rys,mm>1)ipr <pa <+ <P 1 <Pry @5 <1 < @< q,th <ty <--- <ty and

by <lpper - <l < 1y

Proof: Take any xq,..., %, y1,. .., Ys, W1, ..., Wy, 21,...,2m € S. Then by proposition
3.2, for any uy, us, ..., Uprm € U, we have
Sy e =l o, (1)
Again, by proposition 3.3, for any vy, v, ..., v,.s € U, we have
Wil ol A 2l = Ol (12)
Now,

G S

=t gl ol (by equality (1)

= o' oh Pl ol ((as U satisfies (3))
= wiwh w2 (by equality (12))

as required. O
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Theorem 3.5: All semigroup identities of the form:

PLaP2 L pDrqd1092 L s — Hive i .
Ty T xPryitys y? = 0 for all positive integers py, po, ..., p,; where

PLS<p2<- <P 1<Dr Qs <Gs—1 =< < q2 < @

are preserved under epis in conjunction with all seminormal permutation identities.

Proof: As the identity 27" 2h? - - - aPryf'yd* .. - y% = 0 is equivalent to the identity
Pl P2 ePrgd1,92 0 s 5y — P1.P2 | eprg 9192 0 0s — P1P2 | pr, Q1,92 04
oty gy ylz = zay eyt arylyy’ oyl = atal? e aryfyg?-y (13)

we will show that (13) is true for all x1, 2, ..., Zm Y1, Y2, ..., Ys, 2 € S.

So assume that U satisfies (13) and take any x1, 2o, ..., 20 y1, Y2, .-, Ys, 2 € S. Now we
show that the identity (13) is also satisfied by S.

Case(a): z € S and x1,29, ..., 20, Y1, Y2, -, Ys € U.

If z € U, then (13) is trivially satisfied. So assume that z € S\ U. By Result 2.2, let (2)

be a zigzag of minimal length in .S over U with value z. Therefore

oy ay’ Yyt Yl
= aab? - abrylyP -y agty (by zigzag equations)
= a'ah? o alrylyd - y%agty (since U satisfies (13))
= o' ab? . abrylyP -y agty (by zigzag equations)
= altah?alrylyd - yPagty (since U satisfies(13)))
=y’ alylyst oy asmoitin
= a'ab? - abrylyd -yt ay, (by zigzag equations)
= atah? o alrylyd - y% (since U satisfies (13)).

D1 P2.“ Dr, 41 q2.“ qs
Also zay @y’ - 2P Yy yy” -y



p1 q1
Therefore a7 - - - aPryft - -

Case(b): z1,z € S and o, ..

EPIMORPHISMS AND HETEROTYPICAL IDENTITIES-II

YmQomay ah? - abryltyd - -y (by zigrag equations)
YmGom—125 xh> - abryltyd® . y% (since U satisfies (13))
Ym—102m o] ah? - aPryftyd® ...y (by zigzag equations)
Ym—102m 32 ah? - aPryltyd® ...y (since U satisfies (13))
yraqay wh? - alry Y gl

apxtah? - abryltyd - -y (by zigrag equations)

it ab? - abrytyd - y% (since U satisfies (13)).

Us oy — ppPt oo pPr @t oL qs = PV Pl
s &= & Ty Y1 Y =1 "Y1

STy Y1, Y255 Ys € U.

15

45 as required.

If ; € U, then the result follows from Case(a). Therefore we may assume that z; € S\ U.

Then, by Result 2.2, let (2) be a zigzag of minimal length in S over U with value ;. Now

at ah?

pr
T Y Y2

Q q2...ygsz

p1,P1 P2 . ,.pr,,91,,92
m @2m T2 T "Y1 Yo

p1,P1 P2 . pr,, 91,92
Ym Q2 T T "Y1 Yo

— P1,.P2 q1, .92

= rywy e wY Y
as required.
Similarly

P1,.P2 . .pr, 41,492 .. Qs
2Ty Ty "Y1 Yo Ys®

---y%z (by Result 2.6 and zigzag equations)

# (by Case (a))

% (by Result 2.6 and zigzag equations),
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= zyPrabl ab? - abryltyd .-y (by Result 2.6 and zigzag equations)
= ynab,Ty’ - ayyyy -y (by Case (a) as zyf) € 5)

= aab - abrylyd - y% (by Result 2.6 and zigzag equations)

as required.

Therefore o' -+ - abryft - yloz = 2ot o oabryft oo oyls = o' o gPrydt - y% | as required.
Case(c): We assume inductively that the result is true for all zy,...,254,2 € S
and xg,..., T Y1,Y2,...,Ys € U. We shall prove that the result is also true for all
T1,. .., Tk, 2 € S and i1, ..., Tr Y1, Y2, .-, Ys € U. Again if x € U, then the result
follows by inductive hypothesis. So assume that z; € S\ U. Then, by Result 2.2, let (2)
be a zigzag of minimal length in .S over U with value xy.

Now, we have

P1,.P2 Dr,,491 ,,42 q.
Ty Xy T YL Yoot YT R
—  pP1pP2 | PR, pp o PE PR pr 41,92 g i i
= o' ay - yPany o - by s - - - y2oz (by Result 2.6 and zigzag equations)

_ (m)Pk 7 (m)Pk (m)Pk_pp  Prs1 q, g2
WYm by by Ao Tpyy  TY] Yo YLz

(by Results 2.4 and 2.5 for some bY”), . ,b,(gf)l € U and y{™ € S\ U as y,, € S\U

and ag,, = g1ty with t,, € S\U and where w = 20" 25 - - 27" ")

_ (m)pk m (m)p1 (m) Pr—1 Pk ,.Pk+1 ) s
= wym U( )bl .'.bk-_l a2mxk+1 .-.{L’g yl y2 .-.yg Z

(by Result 2.5 as y" t,, € S\U and as v(m) = p{m™ . plm) PEEE

— wyﬁ:l)pkv(m)bgm)pl “ e blgjf)lpk_lagl,:nxzijil e I‘f”'y%lyg2 . ygs (by Case (a))

_ (m)Pky (m)Pk (m)Pk _pp  Prs1 Pr o 41, 42 s
= WYm b by AomTpyq " T Y1 Yoo " " Ys

(by Result 2.5 and the definition of v(™))
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= PP oL PRy bk o PR PR prg A1, 92
= Ty T Ty Y Qo Ty T YL Yo s
Pk Pk Pk _
(as ylm) bgm) . b,(;f)l = yPt and w = 2'ah? - 1))
= aftal? - a alr - atryyd - - y8 (by Result 2.6 and zigzag equations).
Similarly

P1,.P2 Pr,,41,,92 qs
/Uy Ty XY Yot Ys

L P1aP2 Pl Pl o PRAL | pp @102 g

= 2T Ty Tp 1 Ym Qo Tpq "Y1 Yo Ys

(by Result 2.6 and zigzag equations)

(m)

= 2WYm

(by Results 2.4 and 2.5 for some bY”’, e b,(ﬁ)l €U and yo" € S\U as y,, in

Pk

m) Pk
bl

k—1

(m)Pk_pp Pk
b omTE11

+1 q1,,92

ce Yl Yy yd

S\U and ag,, = agm_1tm with t,, € S\U and where w = 225 - - - 27*7")

(m)

p

= zwys?" omb™ T e byl
(by Result 2.5 as ym e S\U and as v(™ = bgm)pkipl e bl(;f)lpkipkfl)
= wyﬁy)pkv(m)bgm)pl e b,(ﬁ)lpkflagfnxi’j: Py Ty
(by Case (a) as wyim pm) ¢ S)
p P Pk
= wy O B AR by
(by Result 2.5 and the definition of v(™))
= a'azh? - .xi’i‘llyﬁag,’%xi’rf Py Ty s
(as ygnm)pkbgm)pk o b;(ﬁ)lpk _ y% and w — x;/lnxgg . xizi—f)
= o' et alryPyP - y% (by Result 2.6 and zigzag equations).
Therefore
m?lxg2 . xf’"yillng “ee ygsz — Z$If1$g2 e xf’"yihyg2 . e ygs — x€1$§2 e xfryglyép [ ygs’

17



18 WAJIH ASHRAF* AND NOOR MOHAMMAD KHAN

as required.

Case(d): z1,29,...,2.,y1,2 € S and ys,...,ys € U.

If y; € U, then the result follows from Case(c). Therefore, we may assume that y; € S\U.
Then, by Result 2.2; let (2) be a zigzag of minimal length in S over U with value y;. Now
as the equalities (14) and (15) follow by Results 2.4 and 2.5 for some b(zl), b in

Uand t" € S\ U as y1,t, € S\ U and where w® = b2 7% ... p81~% respectively, we have

R o T SRR
= aab? - abral't?yd - y% 2 (by Result 2.6 and zigzag equations)
= z'ah? - abrad! bél)ql e bgl)qltgl)qu‘f syl (14)
= 2Pl eV DTy e e (15)
= b ~:U£Taglb§1)ql e bgl)qshz (where h = w(l)tgl)(ny;” eyl
= aoab? . ~:U£Ta81b§1)q2 e bé”qsw“)t?)qug? -+ -y? (by Case(c), since hz € S)
T < T R A O R Yy

(by Result 2.5 and definition of w®)

= a'ab? - abral't?yd - - y% (by Result 2.5 as bgl)ql e b?)mtﬁ”ql =t

= aab - abrylyd - y% (by Result 2.6 and zigzag equations)

as required.

Similarly

PLoP2 | aprg By @2
ZX Ty Ty"Y1 Y Ys®
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_ P12 pr 41441, 92 g . .
= za'ah - alrad't{yg % (by Result 2.6 and zigzag equations)
_ pi,p2 . ope (DT (MO g g

= zayay’ - airag by bs' 17 v s

_ pi,p2 . ope (DB (D ) (DD g g

= ZT, T xPragtby bs! wMt Tyl s

(by Result 2.6 and zigzag equations)

= a'ab? - abradl bgl)qQ . -bgl)qsw(l)tg)myg? -+ -y (by Case (c))
= ai'ah? - -a:{f*aglbgl)ql o -b§1>q1t§”qu32 ---y% (by Result 2.5 and definition of w®)
= ao'ab? - abraltt?yd - y% (by Result 2.5 as bgl)ql e bgl)qltgl)ql =t1")

= a'ab? - abrylyd - y% (by Result 2.6 and zigzag equations)

as required.

Therefore zf* -+ - abryft . yloz = 2ot o oabryft ooyl = o' - gPrydt - y% ) as required.

Case(e): We assume inductively that the result is true for all 21, ..., 2z, y1, ..., yk_1,2in S
and yg, ..., ys € U. We shall prove that the result is also true for all 1, ..., %, Y1, - . -, Yr—1,
Yk, 2 € S and yry1,...,ys € U. Again if y, € U, then the result follows by inductive
hypothesis. So assume that y, € S\ U. Then, by Result 2.2, let (2) be a zigzag of
minimal length in S over U with value y,. Now as the equalities (16) and (17) follow
by Results 2.4 and 2.5 for some bgl, o ,bgl) in U and tgl) € S\U as y,t; € S\U

and where v = yZTf ---y% and by Result 2.5 as ag = y1a1, yl,tgl) € S\U and where

s 7

w® = b M- %% respectively, we have

D1 P2'” Dr,,491 (]2'.. qds
Ty Ty Tr Y1 Yo Ys =

= a'al? - atrylyP -yl ali iy y% 2 (by Result 2.6 and zigzag equations)

qktgl)%vz (16)

_ P, P2 opeo 41,42 k=1, qep(1) T (1)
= I T T "Y1 Yo Yr—1 Qo bk+1 bs
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= el alryfy e n, b e s (17)
= eyl a0
(by inductive hypothesis as w(l)tgl)%vz €59)
= ol alyly Ryl e bt
(by Result 2.5 and the definition of w(®)
=y ey T
(by Result 2.5 as b,(:JZl% e bgl)qktgl)qk = t1* and the definition of v)
= o' abryl Pyl Yyt -y (by Result 2.6 and zigzag equations).
Similarly
AR s
= zaf'al? o alrylyP -yt el Pyl - y2 (by Result 2.6 and zigzag equations)
= il g el T
=zl ag bl b )
= o' abrylyP oyl el ol 2™y (by inductive hypothesis)
= el eyl gl a0

(by Result 2.5 and the definition of w()

— P1,.P2 . pr,91,492 .. . 9%—1_9Kk49k, k+1 q
= I Ty "Y1 Yo Yk—1 @ t1 Y1 Ys®

(by Result 2.5 as b,(:JZlqk e bgl)qktgl)qk = t{* and the definition of v)

p1,.D2 q1,,92 qk—1, 9k, dk+1

= o' wy® - alryltys -y yl ey - yd (by Result 2.6 and zigzag equations).
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Therefore S satisfies

oy wyt Yy eyl e = 2wy syl = atayt e alryltyyt eyl
as required. O
Theorem 3.6: All semigroup identities of the forms:
(1) 2% al? - abr = 2" 2y - als (b < pror - S p2 < p1.g 2 0). (18)
(1) 2" 2t - -alre? = aftal? - aly (pr < pp < - < pry S prg 2 0). (19)

are preserved under epis in conjunction with all seminormal permutation identities.
Proof (i): Assume that U satisfies (18). Take any z,zs,...,2,,2z € S. We shall show
that the identity (18) is also satisfied by S.

Case(a): z € S and xy, 29, ...,z € U.

If z € U, then (18) is trivially satisfied. So assume that z € S\ U. As z € S\ U, by

Result 2.2, we may let (2) be a zigzag of minimal length in S over U with value z. Now

q,.P1,.02  ..p
21T Ty x,"
= ydad a'ab? ... aPr (by zigzag equations and Result 2.6)

=y (agm—_1a2m )%} 25 -+ - 2P (since U satisfies (18))
4 q PPz p
= Ymlom—102,T1 T3 Zy"

(by Result 2.5 as ag,, = agm_1tm and Yy, t, € S\ U)

— q,9 P1,.P2 . ..p
= (Ymaom-1)%a3,, 7" o} "

(by Result 2.5 as ag,, = agpm_1tm and Yy, t, € S\ U)

= (Ym_102m_2)%s 2V xh? - - P (by zigzag equations)
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p1,,.p2 Dr
ym 1a’2m 20’2m‘r1 Ty - ':Crr

(by Result 2.5 as ag,, = agm—1tm and ypm_1,t, € S\ U)

q D1 ,.p2
Y1 (Q2m 2o ) 1wy 2h? - - 2B

(by Result 2.5 as ag,, = agm—1tm and ypm_1,t, € S\ U)

YL (agm 30, )92 ab? - - aPr (as U satisfies (18))

p1,.p2 . ,.p
Y1 Ay 305, 07 T "

(by Result 2.5 as agy, = agm—1tm and ypm_1,t, € S\ U)

D1 ,.p2
(Ym—1G2m—3)7 @2m$1 Ty el

(by Result 2.5 as agy, = agm—1tm and ypm_1,t, € S\ U)

(Ym—oa2m—4)%ad, o' ab? - xPr (by zigzag equations)
p1,.p2 . ,.p
(TXOYG T SYa W R

(by Result 2.5 as agy, = agm—1tm and Ypm—o,t, € S\ U)

pP1,..P2
Yl o(Agm—aaoy, ) a b - - b

(by Result 2.5 as ag, = agm—1tm and Ypm—o,t,m € S\ U)

pl p2
P1,.P2
yiaias, ot xf? - - abr

(by Result 2.5 as ag,, = agm—1tm and yy,t, € S\ U)

P1,..P2
(yra1)%a3,, o wh? - - - b

(by Result 2.5 as as,, = agm_1t, and yp,t, € S\ U)
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— q_.4q P1 ,.P2 : :

= agdad, ' a? - aPr (by zigzag equations)
— P1 .02 ¢

= (apagy)la ah? - - abr

(by Result 2.5 as ag = y1a1, Qo = A2m—1tm and yp,t, € S\ U)
= o'ab? .- 2P (as U satisfies (18))
Case(b): 1,z € S and x9,...,2, € U.

As the equalities (20), (21) follows by Results 2.4 and 2.5 for some b$", ... b{" in U and

) € S\ U as y1,t; € S\ U and where v = 282 - - 277, w®) = BB P2 ... P =P e have

29l abr = el e 2 - aPr (by zigzag equations and Result 2.6)

=zl bgl)pl e bﬁ”plt?)mv (20)
=zl bgl)m e bﬁl)prw(l)tgl)plv (21)
= aglbél)m e bgl)mw(l)tgl)plv (by Case(a))

= af bél)pl e bgl)pltgl)plv (by Result 2.5 and the definition of w(®)

= ap'th'ah? -+ - aPr(by Result 2.5 and the definition of v)

= aoi'ab? .- 2P (by Result 2.6 and zigzag equations)
as required.
Case(c): Now assume inductively that the result is true for all zy,zs,...,24-1,2 € S
and xg, Try1, ..., 2. € U. We shall prove that it is true for all xy,z9,..., 24,2 € S and

Tt .-, € U. If 2, € U, then the result holds by inductive hypothesis. So we may
assume that xy € S\ U. Then, by Result 2.2, we may let (2) be a zigzag of minimal length
in S over U with value ;. As the equalities (22) and (23) follow by Results 2.4 and 2.5

for some b,(clll, b in U and 1Y in S\ U as y1, t; € S\ U and where v = a
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Prk—Ppr

Pk—Pk+1 1
bf« ) . Now, we have

and w) = b,(clll

R SR i

= 20aPahr P abEE g (by zigzag equations and Result 2.6)
= il )" T (22)
= 29zt ah? - ~a:’§’“:11agkb,(€1jzlpk“ - bg})prw(l)tgl)pkv (23)
= ok abr b,(ﬁlllpkﬂ e bgl)prw(l)tgl)pkv (by inductive hypothesis)
= b ~:L'Z’€_711a8’“b,(£1pk a bg)pktgl)pkv (by Result 2.5 and the definition of w())
= 2k 2P tab o (by Result 2.5 as b,(jllpk e bﬁl)pktgl)pk = t1*)
= g et (as v = ol )
= aitah?alt Elazﬁ’“ xi'ff -+ xPr (by Result 2.6 and zigzag equations)

Therefore 2927 xh? - - - abr = o' ab? - aPr for all 2,21, 29,...,2, € S, as required.

Proof (ii): Assume that U satisfies (19). Take any 1, s, ...,2,,2 € S. We shall show
that the identity (19) is also satisfied by S.

Case(a): z € S and xy, 29, ...,z € U.

If z € U, then (19) is trivially satisfied. So assume that z € S\ U. As z € S\ U, by
Result 2.2, we may let (2) be a zigzag of minimal length in S over U with value z.

Now,

D1 p2'.. Dr .4
l‘1$2 ITZ

= a'ah? - aPralt] (by zigzag equations and Result 2.6)



P1,.p2

xl x‘2 ..

P1,.p2

xl x2 ..

P1,.p2

x]_ 1'2 ..

P1,.p2

xl 1'2 ..

P1,.p2

xl x‘2 ..

P1,.p2

xl x‘2 ..

p1,.P2 |

Ty g

P1,.P2

xl xz ..

P1,.p2

P1 .02 |

Ty Ty

P1,.p2

xl x2 ..

P1,.P2

xl x2 ..

P1,.p2 |

Iy Ty

P1,.D2

xl x2 ..

P1,.D2

xl 1‘2 ..
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- xPr(agap )Y (since U satisfies (19))

-xPraait! (by Result 2.5 as ag = y1a; and y1,t; € S\ U)

-xPrad(ast;)? (by Result 2.5 as ag = y1a1 and y1,t; € S\ U)

-xPrad(aqte)? (by zigzag equations)

-xPraladtd (by Result 2.5 as ag = y1a1 and yp,t2 € S\ U)

- 2P (agag)?td (by Result 2.5 as ag = y1a1 and yy,t2 € S\ U)

- xPr(apag)its (as U satisfies (19))

- 2B (aoGgm-—3) ),

~xbradad ot o (by Result 2.5 as ag = y1ay and yq,t,-1 € S\ U)

—xPrad(agm_st,m—1)? (by Result 2.5 as ag = y1a; and yy,t,—1 € S\ U)

- xPrad(ag,—otm)? (by zigzag equations)

~xbradad  ot9 (by Result 2.5 as ag = yya1 and yy,t,, € S\ U)

2P (agagm—2)7te, (by Result 2.5 as ap = y1a1 and yy,t, € S\ U)

- aPr(apagm—1)73 (as U satisfies (19))

~xPradad 19 (by Result 2.5 as ag = yya1 and yy,t, € S\ U)

25
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= o' ab? - 2P (agagm-_1t,)? (by Result 2.5 as ag = y1a; and yy,t, € S\ U)

= a2 aPr (as agagm_1tm = agaz, € U and U satisfies (19))

as required.

Case(b): 1,z € S and xs,...,2, € U.

If 1 € U, then the result follows by Case (a). So assume that 3 € S\ U. As x; € S\ U,
by Result 2.2, we may let (2) be a zigzag of minimal length in S over U with value x;.

Therefore

P 2P 21

= yPrabl ab? .- aPr29 (by zigzag equations and Result 2.6)

— yhpabial - -a (by Case (a)

= aoi'ab? - 2P (by Result 2.6 and zigzag equations )

as required.

Case(c): Now assume inductively that the result is true for all zy,xs,...,241,2 € S
and xg, Tpy1, ..., 2, € U. We shall prove that it is true for all x1,2z9,..., 25,2 € S and
Tkl -, T € U. It 2, € U, then the result holds by inductive hypothesis. So we may
assume that xp € S\ U. Then, by Result 2.2, we may let (2) be a zigzag of minimal

length in S over U with value x;. Now, we have

P1 .02 Dr 4
e I A/
— P12 oL PRy Pk PR PR L pe o i '
= 21Ty Ty age, o - b2 (by zigzag equations and Result 2.6)

(m)Pk 7 (m)Pk (m)Pk pr  DPri1
= m by by 2mT k41

(by Results 2.4 and 2.5 for some bgm), e ,b,(ﬁ)l € U and yﬁnm) e S\U as y,, € S\U

eProd
Pz

and agy, = Agpm_1t, with t,, € S\U and where w = 225 - - 27" ")
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= wy o B e a2
(by Result 2.5 as y"), t,, € S\U and where v(™ = p{™"™ " .. ~b,(:_1)1pk_pk_1)

- wy,(n,in)pkv(m)bgm)pl e b,(;f)lpkflag’;n:ciiﬁl -+ xP (by Case (a))

= wym

(m)Pky (m)Pk (m)Pk_pr  Pit1
by s bRty gy

(by Result 2.5 as " ¢, € S\U and as v = p™"™ .. b

— P1.p2 . Pk=1,pp Pk Petl  op
= T3 Xy Ly Ym AomLpiy ~ " Ty
Pk Pk Pk _
(as ym bgm) i b,(ff)l = ybt and w = a'ah? - 2t
= oo alkalt - abr (by zigzag equations and Result 2.6)
Therefore
p1,..p2 . ,.Pr.q _ ,P1,.P2  ,.D
b a2t = gtk
forall z, x1, 22, ...,2, € 5, as required. O
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