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1.   INTRODUCTION  

Ajibade [1] introduced the concept of rhotrix as an object whose elements are arranged in a 

rhomboidal nature. This concept was indeed an extension of earlier works of [9] on matrix-

tersions and matrix noitrets. Suppose 𝑅 and 𝑄 are two rotrices such that  

         𝑅 = ⟨
𝑎

𝑏    ℎ(𝑅)     𝑑
𝑒   

⟩ , 𝑄 = ⟨
𝑓

𝑔    ℎ(𝑄)     𝑗
𝑘   

⟩    where  ℎ(𝑅) and ℎ(𝑄)  are the hearts of these 

rhotrices. 
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It follows from [1] that   

          𝑅 + 𝑄 = ⟨
𝑎

𝑏    ℎ(𝑅)     𝑑
𝑒   

⟩ +  ⟨
𝑓

𝑔    ℎ(𝑄)     𝑗
𝑘   

⟩ = ⟨
𝑎 + 𝑓

𝑏 + 𝑔    ℎ(𝑅) + ℎ(𝑄)    𝑑 + 𝑗
𝑒 + 𝑘   

⟩ 

   and      𝑅 ∘ 𝑄 = ⟨

    𝑎ℎ(𝑄) + 𝑓ℎ(𝑅)

𝑏ℎ(𝑄) + 𝑔ℎ(𝑅)    ℎ(𝑅)ℎ(𝑄)      𝑑ℎ(𝑄) + 𝑗ℎ(𝑅)

    𝑒ℎ(𝑄) + 𝑘ℎ(𝑅)   

⟩ 

Sani [5] gave an alternative method for multiplying rhotrices which is given by 

                       𝑅 ∘ 𝑄 = ⟨

    𝑎𝑓 + 𝑑𝑔

𝑏𝑓 + 𝑒𝑔      ℎ(𝑅)ℎ(𝑄)    𝑎𝑗 + 𝑑𝑘
   𝑏𝑗 + 𝑒𝑘   

⟩. 

The generalization of this alternative method of multiplication was later given by Sani [6] as 

follows; 

𝑅𝑛 ∘ 𝑄𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 = 〈 ∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)

𝑡

𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1
𝑑𝑙2𝑘2

)

𝑡−1

𝑙2𝑘1=1

〉 , 𝑡 =
𝑛 + 1

2
 , 

where  𝑅𝑛 and 𝑄𝑛 denote  𝑛-dimensional rhotrices (with  𝑛 rows and 𝑛 columns). 

Mohammed [2] and Isere [4] obtained a new way of representing rhotices in a general form. 

Another method known as row-wise representation was also given by Chinedu [11]. In [3], some 

construction of rhotrix semigroup was obtained. The ample (formerly type A) version of rhotrix 

semigroup as well as its congruences was given by Ndubuisi et al [12]. Again in [13], Ndubuisi 

et al employed 𝜔-cosets of rhotrix ample subsemigroups and obtained a more general form of 

representation for a rhotrix ample semigroup than the one given in [12]. This result is analogous 

to those of inverse semigroups (see [8] and [10]) and ample semigroups (see [14]). 

The later representation of rhotrix ample semigroup given in [13] presented the importance of 

 𝜔-cosets of rhotrix ample subsemigroups of a rhotrix ample semigroup as a useful tool in 

studying representations of rhotrix ample semigroups. 

This paper is therefore aimed at the properties of  𝜔 -cosets of closed rhotrix ample 

subsemigroups. It also considers partial right congruences on rhotrix ample semigroups. 
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2.   PRELIMINARIES  

Some definitions and known results needed in this work are presented in this section. For the 

notation and terminologies not mentioned in this paper, the reader is referred to [1], [12] and [13]. 

Throughout our study, we will use the term semigroup 𝑆 to refer to rhotrix ample while  𝐸(𝑆) 

denotes the semilattice of idempotents. 

Definition 2.1. Suppose  𝑎, 𝑏 be elements of a semigroup 𝑆, we define   𝑎 ℛ∗𝑏  if and only if for 

all 𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 = 𝑦𝑎 ⇔ 𝑥𝑏 = 𝑦𝑏. Dually we define the relation ℒ∗.  

Let 𝑆 be a semigroup and 𝑎 𝜖 𝑆. The elements  𝑎†( resp.  𝑎∗) will denote an idempotent element 

in   ℛ∗( resp.  ℒ∗)-class  𝑅𝑎
∗  (resp.  𝐿𝑎

∗ ).  

Definition 2.2. A semigroup  𝑆 with a semilattice of idempotents  𝐸(𝑆) is said to be an adequate 

semigroup if each ℛ∗-class and ℒ∗-class contain an idempotent.  With  𝐸(𝑆) being a semilattice 

such an idempotent is unique.  

Definition 2.3. A left adequate semigroup is said to be a left ample (formerly left type A) if for 

all  𝑒 𝜖 𝐸(𝑆) and 𝑎 𝜖 𝑆, 𝑎𝑒 = (𝑎𝑒)†𝑎  (see [7]) and dually for right ample (formerly right type A) 

semigroups. A semigroup  𝑆 is said to be an ample (formerly type A) semigroup if it is both left 

and right ample.  

Theorem 2.4. [12] Let 𝑅𝑛(Ϝ) be a set of all rhotrices of size  𝑛 with entries from an arbitrary 

field  Ϝ. For any 𝐴𝑛,  𝐵𝑛  𝜖 𝑅𝑛(Ϝ), define a binary operation  ∘ on  𝑅𝑛(Ϝ) by the rule: 

𝐴𝑛  ∘  𝐵𝑛 = 〈𝑎𝑖1𝑗1
, 𝑐𝑙𝑖𝑘1

〉 ∘ 〈𝑏𝑖2𝑗2
, 𝑑𝑙2𝑘2

〉 = 〈 ∑ (𝑎𝑖1𝑗1
𝑏𝑖2𝑗2

)

𝑡

𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1
𝑑𝑙2𝑘2

)

𝑡−1

𝑙2𝑘1=1

〉 , 𝑡 =
𝑛 + 1

2
 , 

where  𝐴𝑛 and 𝐵𝑛 denote  𝑛-dimensional rhotrices. Then 𝑆 = (𝑅𝑛(Ϝ), ∘ ) is a semigroup. 

Lemma 2.5. [12]  Let  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆 = (𝑅𝑛(Ϝ), ∘ ). Then we have 

i)〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℛ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 if and only if  𝑎𝑖𝑗ℛ∗𝑏𝑖𝑗 and  𝑐𝑙𝑘 ℛ∗𝑑𝑙𝑘 . 

ii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℒ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 if and only if  𝑎𝑖𝑗ℒ∗𝑏𝑖𝑗 and  𝑐𝑙𝑘 ℒ
∗ 𝑑𝑙𝑘 . 

iii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℋ∗〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 if and only if  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℛ∗ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 and  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ℒ∗ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. 
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Lemma 2.6.[12] Suppose 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 = (𝑅𝑛(Ϝ), ∘ ).  Then 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆)  if and only 

if  𝑎𝑖𝑗 𝜖 𝐸(ℳ𝑡(Ϝ)) and 𝑐𝑙𝑘 𝜖 𝐸(ℳ𝑡−1(Ϝ)). 

Theorem 2.7. [12]  𝑆 = (𝑅𝑛(Ϝ), ∘ ) is an ample  semigroup. 

Remark 2.8. [12] It is important to note that 〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉 is the idempotent in the ℛ∗-class as well as 

the ℒ∗ -class. For the sake of ambiguity, we will use 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† = 〈𝑎𝑖𝑗 , 𝐼𝑙𝑘〉  and  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ =

〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉 to denote the respective idempotents. 

 

3.   PARTIAL ORDER RELATION ON S 

Now let  𝑆 be a rhotrix ample semigroup with a semilattice  𝐸(𝑆) of idempotents. The partial 

order relation  ≤ will be defined on  𝑆 as follows: 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 if and only if 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 = 〈𝐼𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 for 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖  𝑆  and 

〈𝐼𝑖𝑗 , 𝑐𝑙𝑘〉 𝜖 𝐸(𝑆).  

To see that  ≤  is an equivalence relation on  𝑆 , we have that; for 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 𝜖  𝑆,  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 =

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝐼𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 which shows reflexivity.  

It can be easily checked that   ≤ is anti-symmetric and transitive. 

A partial ordering  ≤  on  𝑆  is also defined as a relation on  𝑆  such that for  

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖  𝑆,  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉  if and only if 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 =

〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗. 

More so, suppose 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉  then 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†.  

In the same way, if 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 then  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗ ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗. 

The lemma below presents some properties of the partial order relation  ≤ on a rhotrix ample 

semigroup  𝑆. 

Lemma 3.1.  Suppose 𝑆 is a rhotrix ample semigroup such that  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖  𝑆. Then the 

following statements are equivalent. 

i)   〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

ii)  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 and  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 
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iii) 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)
†

〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 and 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉(〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗)
∗
 

iv) More so, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  and 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 ≤ 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉  implies that 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉 ≤

〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 for  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉, 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜖 𝑆. 

Proof.  i)  ⟹ ii) Let  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 so we have  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉, 

               〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉        

                                               = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

                                               = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

                                                     = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉. 

More so, we have that  

                      〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 implies that   

                         〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 

                                                            = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 

                                                            = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉. 

iii)  ⟹ i) is obvious 

iv) Follows from the transitivity property of the partial order relation  ≤ applied to the product 

given by   〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉.   

Lemma 3.2.  Let 𝑆 be a rhotrix ample semigroup and let 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆, then there exist  

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝑆 such that 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 ≤ 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 ≤ 〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉, also there exists 〈𝑞𝑖𝑗 , 𝑟𝑙𝑘〉 𝜖 𝑆 

such that 〈𝑞𝑖𝑗 , 𝑟𝑙𝑘〉 ≤ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 and 〈𝑞𝑖𝑗 , 𝑟𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. 

Proof. If 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 ≤ 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉  , 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 ≤ 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖  𝑆  then with  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 =

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉†〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉. It follows that  

                                〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 

                                                                   = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉†〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 

                                                                   = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 

So that if we let 〈𝑞𝑖𝑗 , 𝑟𝑙𝑘〉 =  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 then we have that 
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                              〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉† = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉† and 

                              〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 

                                          = 〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉†〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉. 

Thus, 〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉 ≤ 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉. 

Similarly,      〈𝑞𝑖𝑗 , 𝑟𝑙𝑘〉 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 

                                    = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉†〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 

                                    = 〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉†〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 

which implies that  〈𝑞𝑖𝑗, 𝑟𝑙𝑘〉 ≤ 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉. 

Lemma 3.3. Let 𝑆 be a rhotrix ample semigroup and let 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆. Suppose that  

〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 is the right unit of 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 and 〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉 the right of  〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 then 〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 ≤

〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉. 

Proof. Let  〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 be the right unit of  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 and  〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉 the right of  〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 

then we have that  〈𝑒𝑖𝑗 , 𝐼𝑙𝑘〉 = (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
 and 〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗.  

We know that  

(〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗

= (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
,  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉(〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)

∗
. 

Consequently,   

        〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉〈𝑓𝑖𝑗, 𝐼𝑙𝑘〉 = 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
  

                                   =  (〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗))
∗

 

                                   =   (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉( 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)
∗
)

∗
 

                                   = (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉∗〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
 

                                        = (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)
∗
  

                                   = 〈𝑒𝑖𝑗 , 𝐼𝑙𝑘〉. 

It is known in [12] that idempotents commute on rhotrix ample semigroup, so we have that 

                    〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 = 〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉 

                                                     = 〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉.   Thus  〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 ≤ 〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉. 
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4.   𝝎-COSETS OF A CLOSED SUBSEMIGROUP OF RHOTRIX AMPLE SEMIGROUP 

Throughout this section, we shall denote the natural partial order of a rhotrix ample semigroup 

by  𝜔. Now let  〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜖 𝑆 and put  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉𝜔 = {〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 ∶  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜔 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 }. 

Let  𝐾 = 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 be a subset of  𝑆 such that the closure of  𝐾 in  𝑆 becomes 

                〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔 = {〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆 ∶  〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 𝜔 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 }. 

We state below some properties of the closure of 𝐾 in  𝑆 as adopted from [13]. 

Lemma 4.1. [13] Let  𝐾 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 and  𝑇 = 〈𝑠𝑖𝑗, 𝑡𝑙𝑘〉 be subsets of a rhotrix ample semigroup 

𝑆. Then the following is evident 

i)   〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 ⊆ 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 𝜔  

ii)  〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉 𝜔 ⊆ 〈𝑠𝑖𝑗, 𝑡𝑙𝑘〉 𝜔  if  〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 ⊆ 〈𝑠𝑖𝑗 , 𝑡𝑙𝑘〉 

iii)  ((〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔)〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) 𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)𝜔 

Lemma 4.2. Let 𝑆 be a rhotrix ample semigroup with  𝐾 = 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉 as its subsemigroup. Then  

i)  〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉𝜔  is closed ample subsemigroup of  𝑆 

ii)  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔)〈𝑔𝑖𝑗, ℎ𝑙𝑘〉 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔 for each  〈𝑔𝑖𝑗, ℎ𝑙𝑘〉 𝜖  𝑆 

Proof.  i) The proof is a routine check. 

ii) The proof follows from Lemma 3.1 for each  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖  𝐾, we have 

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔)〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ⊆ (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉) = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔  which completes the proof. 

The following Lemma is true for a closed subsemigroup of rhotrix ample semigroups. 

Lemma 4.3. Let  𝑄 = 〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉  be a closed subsemigroup of a rhotrix ample semigroup  𝑆. 

Suppose  𝑉 is a closed subsemigroup of  𝑄, then  𝑉 is also closed in  𝑆. 

Proof.  Suppose  〈𝑡𝑖𝑗, ℎ𝑙𝑘〉 𝜖 𝑄  is in  𝑉𝜔  then for some  〈𝑠𝑖𝑗, 𝑜𝑙𝑘〉 𝜖 𝑉  we have 〈𝑠𝑖𝑗 , 𝑜𝑙𝑘〉, 

〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉 𝜖 𝜔. Since  𝑉 is closed in 𝑄 then  𝑉𝜔 = 𝑉 which implies that  〈𝑡𝑖𝑗, ℎ𝑙𝑘〉 𝜖 𝑉. 

From 〈𝑡𝑖𝑗, ℎ𝑙𝑘〉 𝜖 𝑉  and 𝑉 ⊂ 𝑄 ⊂ 𝑄𝜔  then  〈𝑡𝑖𝑗 , ℎ𝑙𝑘〉 𝜔 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉  for 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜖 𝑄𝜔,  it follows 

from the transitivity of  𝜔 that  (〈𝑠𝑖𝑗, 𝑜𝑙𝑘〉, 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉) 𝜖 𝜔.  

Thus 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝑉𝜔. 
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But we already know that (〈𝑠𝑖𝑗 , 𝑜𝑙𝑘〉, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜖 𝜔 implies that (〈𝑠𝑖𝑗, 𝑜𝑙𝑘〉†, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†) 𝜖 𝜔 and 

(〈𝑠𝑖𝑗, 𝑜𝑙𝑘〉∗, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗) 𝜖 𝜔 so that  〈𝑠𝑖𝑗, 𝑜𝑙𝑘〉†, 〈𝑠𝑖𝑗 , 𝑜𝑙𝑘〉∗ 𝜖 𝑉𝜔 = 𝑉.  

But  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†, 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉∗ 𝜖 𝑄𝜔   and  𝑄𝜔 = 𝑄,  thus  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗ 𝜖 𝑉𝜔 = 𝑉 

which implies that  𝑉 is closed in  𝑆. 

 

5.   PARTIAL RIGHT CONGRUENCES ON  𝑺 

Now let  𝐾 be a rhotrix ample semigroup of  𝑆 and define a relation  𝜌𝐾  on  𝑆 in terms of  𝜔-

cosets of  𝐾 by the rule: 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌𝐾  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  if and only if 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉) 𝜖 𝜔  for some 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆. 

Lemma 5.1.  𝜌𝐾 is a partial equivalence on  𝑆.  

Proof.  That 𝜌𝐾  is reflexive is clear. It is known from the proof of lemma 4.3 that if  

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)𝜔  then  〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  𝜔  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉  and we have 

that  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)𝜔. 

It also follows from lemma 4.3 that (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉)𝜔, and that  

〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)𝜔 implies that  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉)𝜔 

so that we have 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 if and only if  〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜌𝐾 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉.  

Hence  𝜌𝐾 is a symmetric relation. 

𝜌𝐾 is a transitive relation since from  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 and 〈𝑏𝑖𝑗 , 𝑑𝑙𝑘〉 𝜌𝐾  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 it follows 

from lemma 4.3 that  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 

so that 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔. 

Thus  𝜌𝐾 is a partial equivalence on  𝑆. 

Remark 5.2. We note that if  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉†  ∉ 𝐾, then obviously 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 ∉ (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉)𝜔 

which implies that  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌𝐾  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉  may not hold for all  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜖 𝑆. 

Put  𝐷𝐾
∗ = {〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝑆 ∶  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾}. We call the set  𝐷𝐾

∗  the domain of the relation 𝜌𝐾 . 
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We say that a partial equivalence  𝜌𝐾  on 𝑆  is a partial right congruence if and only if 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 𝜖 𝑆 we have that   

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  implies that (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉) 𝜌𝐾 (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)  is true for all  

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝑆 or both  〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉, 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜖 𝑆|𝑑𝑜𝑚  𝜌𝐾 . 

The next lemma shows that  𝜌𝐾  is a partial right congruence on  𝑆. 

Lemma 5.3.  𝜌𝐾 is a partial right congruence on  𝑆 

Proof.  Let 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉. So we have that 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉)𝜔. 

But  〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗ = (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗)
†

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 so that   

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 = (〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗)
†

 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉. 

Hence we have 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜔 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉  and  

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)𝜔, so that  

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)𝜔 . It is now obvious that when   

(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
†

 𝜖 𝐾, then  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)𝜔 is an  𝜔-coset and then 

〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 = 〈𝑎𝑖𝑗 , 𝑐𝑙𝑘〉(〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉) 

                                                   = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉(〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
∗
 

                  = (〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)(〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉∗〈𝑝𝑖𝑗 , 𝑞𝑙𝑘〉)
∗
𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)𝜔.  

Obviously, 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉 implies that 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑝𝑖𝑗 , 𝑞𝑙𝑘〉 if 

〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉 𝜖 𝑆 is such that  (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑝𝑖𝑗, 𝑞𝑙𝑘〉)
†

 𝜖 𝐾. 

Thus   𝜌𝐾  is a right partial congruence on  𝑆. 

Remark 5.4. It is important to note that the  𝜔-coset  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 is a closed set since 

it is known that the closure of a set is closed. 

Lemma 5.5.  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉)𝜔 is a congruence class modulo   𝜌𝐾 . 

Proof.  It is known that  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉)𝜔 is an 𝜔-coset  for 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐷𝐾
∗  .  

Let  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔, then  〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉. 
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But we have that  

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
†

𝜔 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†,  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
†

= (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†)
†

𝜔 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 

and since 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾, then  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉)
†

𝜖 𝐾.  

Consequently, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜖 𝐾 so that  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐷𝐾
∗  and  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 is an 𝜔-coset . 

We have that 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 implies that  

〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗ = 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉∗, so 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗. 

Also we have that 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 implies that  

                             (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
∗

= (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉∗〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉)
∗
𝜔 〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉∗.  

Together with 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉∗〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
∗

= 〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉∗〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜖 (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔  

and  〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉∗〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜔 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ then  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔. 

Consequently, it follows that  

(〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 = (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 resulting in  〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜌𝐾 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉. 

Conversely, let 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜌𝐾 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉,  then since 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗ 𝜖 (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔  

and  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗ = (〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗)
†

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 so we have that 

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔. 

But  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖  (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 implies that  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉† 𝜖 𝐾  so obviously  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐷𝐾
∗ , 

and thus (〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 is a  𝜌𝐾 -class. 

So far, we have proved the following theorem 

Theorem 5.6. Let  𝐾 be a closed subsemigroup of a rhotrix ample semigroup 𝑆. Define a relation 

 𝜌𝐾 on  𝑆 as follows: 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 𝜌𝐾 〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉  implies that 

(〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉) 𝜌𝐾 (〈𝑏𝑖𝑗, 𝑑𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉).  

Then 𝜌𝐾 is a partial right congruence on  𝑆. 

Remark 5.7. If however 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾 then  (〈𝑚𝑖𝑗 , 𝑛𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 = 〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔 showing that  

〈𝑚𝑖𝑗, 𝑛𝑙𝑘〉𝜔 is also a 𝜌𝐾 -class. It is obvious that  𝐾 is the only 𝜌𝐾 –class containing idempotents. 
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We will conclude this section by showing an interesting property of a partial right congruence on 

a rhotrix ample semigroup. 

Now let  𝜎 be a partial right congruence on a rhotrix ample semigroup 𝑆. Then  𝜎 will be called a 

principal partial right congruence if it is also a right cancellation congruence such that 𝜎-class is 

closed, and only one  𝜎-class contains some idempotents.  

Theorem 5.8. Let  𝑆 be a rhotrix ample semigroup and let  𝜎 be a principal right congruence on 

 𝑆. A  𝜎-class 𝐾 containing idempotents is a closed rhotrix ample subsemigroup of  𝑆. 

Proof. To prove that 𝐾 is a rhotrix ample semigroup, we observe that if  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉, 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾 

then 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾.  Also  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜎 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†  implies  〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜎 

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉, hence 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉, 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾, so  𝐾 must be a subsemigroup of 𝑆. Suppose  

〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 𝜖 𝐸(𝑆)  then we have that 〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 𝜖 𝐾,  so every 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾 , it follows that  

〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉, (〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
†

,  (〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
∗
 are in  𝐾  and  〈𝑒𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 =

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉(〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)
∗
 holds in  𝐾. 

In the same manner, 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉 =, (〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑒𝑖𝑗, 𝐼𝑙𝑘〉)
†

〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜖 𝐾.  Also for  

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾𝜔, then 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 for some 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾. 

But 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉† 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉† , 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗ 𝜔 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗  and 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉†, 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ 𝜖 𝐾,  so 

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾. Thus, 𝐾𝜔 ⊆ 𝐾. 

Consequently, suppose that 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾𝜔  then we have 〈𝑓𝑖𝑗, 𝐼𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 = 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾, for 

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾, 〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉 𝜖 𝐸(𝐾).  Now 〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 = 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉(〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
∗

 and with  

〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾,  (〈𝑓𝑖𝑗 , 𝐼𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)
∗
 𝜖 𝐾 then  〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝐾. Thus,  𝐾𝜔 = 𝐾. 

Now suppose 〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉 𝜎 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉  where 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉, 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 𝑆.  Evidently, 

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉  ⊆  (𝐾〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔  and 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉 𝜖 (𝐾〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔  since 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉†, 

〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ 𝜖 𝐾. But we have that 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉∗ 𝜎 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ . If  〈𝑥𝑖𝑗, 𝑦𝑙𝑘〉〈𝑢𝑖𝑗, 𝑣𝑙𝑘〉∗ 𝜖 (𝐾〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 

then with 〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ 𝜖 𝐾,  we have that 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ =
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(〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗)
†

〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 𝜖 𝐾〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉 so that 〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉∗ 𝜖 (𝐾〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 implying 

that (𝐾〈𝑢𝑖𝑗 , 𝑣𝑙𝑘〉)𝜔 ⊆ (𝐾〈𝑥𝑖𝑗 , 𝑦𝑙𝑘〉)𝜔 . 
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