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Abstract. A left adequate semigroup S is called left ample if for any a, e2 = e ∈ S, ae = (ae)†a. Inverse

semigroups are left ample semigroups. In this paper we study primitive left ample semigroups. The

structure theorem of primitive left ample semigroups with certain conditions is established.
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1. Introduction and Preliminaries

Left ample semigroups form a special class of left abundant semigroups. Interest in

the latter arose originally from the study of monoids by their associated S-sets. A left

abundant semigroup is a semigroup with the property that all principal left ideals are

projective. All regular semigroups are left abundant semigroups and so are many other

types of semigroups including right cancellative monoids. Inverse semigroups are left

ample semigroups. It is interest that any left ample semigroup can be embedded into

an inverse semigroup (see [1]). There are many authors having been investigating left
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ample semigroups. The present paper continues the probe for this kind of left abundant

semigroups and is inspired by Fountain [3].

Throughout this paper, we will use the terminologies and notations of [2, 4]. We recall

some known results which are used in the sequel.

Let S be a semigroup and a, b ∈ S. We call elements a and b to be related by R∗ if and

only if a and b are related by R in some oversemigroup of S. Dually, we can define the

relation L∗. The following lemma gives an alternative characterization of R∗; the dual

for the relation L∗.

Lemma 1.1 [3] Let S be a semigroup and a, b ∈ S. Then aR∗b if and only if for all

x, y ∈ S1, xa = ya⇔ xb = yb.

As an easy but useful consequence of Lemma 1.1, we have

Lemma 1.2 [3] Let S be a semigroup and a, e2 = e ∈ S. Then aR∗e if and only if ea = a

and for any x, y ∈ S1, xa = ya implies that xe = ye.

It is well known that R∗ is a left congruence while L∗ is a right congruence. In general,

we always have L ⊆ L∗ and R ⊆ R∗. It is worth to pointing out that when a and b

are regular elements, aRb [aLb] if and only if aR∗b [aL∗b]. In particular, for a regular

semigroup, we always have R = R∗ and L = L∗.

A semigroup S is called left abundant if each R∗-class of S contains at least one idem-

potent. Dually, right abundant semigroup can be defined. The semigroup S is called

abundant if S is both left abundant and right abundant. As in [2], a (left; right) abun-

dant semigroup is called (left ; right) adequate if all idempotents commute. It is easy to

check that if S is a left (right) adequate semigroup then each R∗-class (L∗-class) of S con-

tains exactly one idempotent. We shall use a† to denote the idempotents in the R∗-class

containing a while a∗ to denote those in the L∗-class containing a. By a left (right) ample

semigroup, we mean a left (right) adequate semigroup in which ae = (ae)†a (ea = a(ea)∗)

for any element a and any idempotent e. If a semigroup is both left ample and right

ample, then we call it ample. (Left; right) ample semigroups are formerly known as (left;

right) type-A semigroups.
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If e, f ∈ E(S), we write e ≤ f if and only if e = ef = fe. Indeed, ≤ is an order on the

set E(S) of S. A nonzero idempotent g of S is called primitive if for any f ∈ E(S), f ≤ g

implies that f = g or f = 0 if S has zero. We call S primitive if all idempotents of S are

primitive. In what follows, we call a primitive left ample semigroup a PLA-semigroup.

Lemma 1.3 Let S be a PLA-semigroup with zero 0. If a, b ∈ S, e, f ∈ E(S), then

(1) aR∗ab or ab = 0.

(2) ae = 0 or ae = a. Moreover, if aS 6= {0}, then there exists unique a� ∈ E(S) such

that aa� = a.

(3) If e 6= f then ef = 0.

Proof. (1) Assume ab 6= 0. Since a† · ab = ab, we have a†(ab)† = (ab)†, hence (ab)†a† ∈

E(S), (ab)†a† ≤ a† and (ab)†R(ab)†a†. But a† is primitive, so (ab)†a† = a† or (ab)†a† = 0.

If (ab)†a† = 0, then (ab)† = (ab)†a† · (ab)† = 0, so that ab = (ab)†ab = 0 since abR∗(ab)†.

This is contrary to ab 6= 0. Thus (ab)†a† = a†, and whence aR∗a†R(ab)†R∗ab.

(2) Suppose that ae 6= 0. Then by (1), (ae)†R∗aeR∗aR∗a†, so that (ae)† = a† since S

is a left ample semigroup, so we have ae = (ae)†a = a†a = a.

Now assume still aS 6= {0}. Then there exists x ∈ S such that ax 6= 0. But ax† · x =

ax 6= 0, so ax† 6= 0, further by the foregoing proof, ax† = a. If g ∈ E(S) such that ag = a,

then a = ag = ax† · g, hence x†g 6= 0, so that x†g ≤ x†, g. It follows that x† = x†g = g

since x†, g are primitive idempotents. Consequently, there exists unique a� ∈ E(S) such

that aa� = a.

(3) Since ef ≤ e, we have ef = 0 or ef = e. If the second equality holds, then e ≤ f ,

hence e = 0 or e = f , thus e = 0. However ef = 0. 2

2. PLA blocked Rees matrix semigroups

The aim of this section is to construct a class of primitive left ample semigroups.

Let I be non-empty set and J a non-empty set. Now, we index the partition P (I) =

{Iγ : γ ∈ J} of I. For each pair (α, β) ∈ J × J , if Mαβ is a set such that for each α,

Mαα = Tα is a monoid with identity 1α; and for α 6= β, then either Mαβ = ∅ or Mαβ
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is a (Tα, Tβ)-bisystem (such a nonempty set having an action of Tα on the left and one

of Tβ on the right). We now let 0 be a symbol not in any Mαβ. By the (α, β)-block of

an I × I-matrix, we mean those (i, j) positions with i ∈ Iα, j ∈ Iβ. The (α, α)-blocks

are called the diagonal blocks of matrix. We denote by S the set consisting of the zero

I × I matrix together with all I × I matrices with a single non-zero entry where in the

(α, β)-block is a member of Mαβ.

Following the usual convention, we use (a)ij to denote the I × I matrix with entry a

in the (i, j) position and 0 elsewhere, and 0 the I × I matrix all of whose entries are 0.

Suppose that the following conditions are satisfied:

(M): For all α, β, γ ∈ J , if Mαβ,Mβγ are both non-empty, then Mαγ is non-empty

and there is a (Tα, Tβ)-homomorphism φαβγ : Mαβ ⊗ Mβγ → Mαγ such that if

α = β or β = γ, then φαβγ is a canonical isomorphism such that the square

Mαβ ⊗Mβγ ⊗Mγδ

idαβ⊗φβγδ−−−−−−→ Mαβ ⊗Mβδ

φαβ⊗idβδ

y yφαβδ

Mαγ ⊗Mγδ −−−→
φαγδ

Mαδ

is commutative, where idαβ is the identity mapping on Mαβ.

(C): (In what follows, we simply denote (a ⊗ b)φαβγ by ab, for a ∈ Mαβ, b ∈ Mβγ).

If a1, a2 ∈Mαβ, b ∈Mβγ, then a1b = a2b implies a1 = a2.

(R): If Mαβ,Mβα are both non-empty where α 6= β, then aba 6= a for all a ∈Mαβ, b ∈

Mβα.

Now, let A,B ∈ S. If A = 0 or B = 0, then AB = 0. Assume that A = (a)ij and

B = (b)kl are neither 0. If j 6= k, then AB = 0. Assume that j = k. Then AB = (ab)il.

Thus, we have a product ◦ defined on S by A ◦B = AB. We can easily check that (S, ◦)

is a semigroup, call the LA blocked matrix semigroup. For the sake of convenience, we

denote this semigroup by LABM(Mαβ; I, J).

Proposition 2.1 Let (a)ij ∈ LABM(Mαβ; I, J)\{0} with a ∈Mαβ.

(1) (a)ij is an idempotent if and only if i = j and a = 1α.

(2) (a)ijR∗(1α)ii.
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(3) (a)ij is regular if and only if α = β and a is a unit of Tα.

(4) (a)ijLABM(Mαβ; I, J) 6= {0}.

Proof. (1) If (a)ij is an idempotent, then 0 6= (a)ij = (a)2ij, hence i = j and a2 = a. The

second equality implies that α = β and a = 1α by Condition (C). But the converse is a

routine computation.

(2) Obviously, (a)ii = (1α)ii(a)ij. Let (x)kl, (y)pq ∈ LABM(Mαβ; I, J) and assume

(x)kl(a)ij = (y)pq(a)ij. We consider the following two cases:

• If (x)kl(a)ij = 0, then (x)kl = 0 or l 6= i. It follows that (x)kl(1α)ii = 0. Similarly,

(y)pq(1α)ii = 0.

• If (x)kl(a)ij = (y)pq(a)ij 6= 0, then k = p, l = i = q and xa = ya. The second

equality can imply that x = y by Condition (C). Thus (x)kl(1α)ii = (x)ki =

(y)pi = (y)pq(1α)ii.

We have proved that if (x)kl(a)ij = (y)pq(a)ij then (x)kl(1α)ii = (y)pq(1α)ii. Consider

that (x)kl(a)ij = (a)ij = (1α)ii(a)ij. In fact, we have proved that for all (x)kl, (y)pq ∈

LABM(Mαβ; I,Γ)1, (x)kl(a)ij = (y)pq(a)ij implies that (x)kl(1α)ii = (y)pq(1α)ii. Thus

(a)ijR∗(1α)ii.

(3) Assume (a)ij is regular. Then there exists (b)ji such that (a)ij(b)ji(a)ij = (a)ij.

It follows that a = aba. By Condition (U), this shows that α = β and a = aba. By

Condition (C), the second equality can derive that ab = 1α, so that a is a unit of Tα. The

reverse is trivial.

(4) Let (a)ij ∈ LABM(Mαβ; I, J) with a ∈ Mαβ. Clearly, (a)ij(1β)jj = (a)ij, so that

(a)ijLABM(Mαβ; I, J) 6= {0}. 2

Theorem 2.2 LABM(Mαβ; I, J) is a PLA-semigroup.

Proof. By Proposition 2.1, LABM(Mαβ; I, J) is a left abundant semigroup and

E(LABM(Mαβ; I, J)) = {(1α)ii : α ∈ J} ∪ {0}.

Now, by the definition of LABM(Mαβ; I, J), for any u, v ∈ E(LABM(Mαβ; I, J)),

we easily see that uv = 0. It follows that any idempotent of LABM(Mαβ; I, J) is
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primitive and that E(LABM(Mαβ; I, J)) is a semilattice under the multiplication of

LABM(Mαβ; I, J). Thus LABM(Mαβ; I, J) is a primitive left adequate semigroup.

Let (a)kl ∈ LABM(Mαβ; I, J) with a ∈Mβγ. Since

(a)kl(1α)ii =

 0 = 0(a)kl if k 6= i;

(a1α)ki = (a)ki = (1β)kk(a)kl if l = i,

we have that LABM(Mαβ; I, J) is left ample. We complete the proof. 2

3. The structure theorem

In this section we establish the structure theorem for primitive left ample semigroups.

Theorem 3.1 Let S be a PLA-semigroup. If aS 6= {0} for all a ∈ S\{0}, then S is

isomorphic to some PL blocked Rees matrix semigroup.

Proof. Assume S is a PLA-semigroup satisfying the given conditions, and P the set of

nonzero idempotents of S. Denote

Q = {Dx : x ∈ Reg(S)\{0}},

where Dx is the D-class of S containing x. For any α ∈ Q, we use Pα to stand for the set

of idempotents of the set α and further we fix an element 1α of Pα. Clearly, P = ∪α∈QPα.

Put Nαβ = (1αS1β)\{0}.

Lemma 3.2 (1) Nαα is a right cancellative monoid.

(2) Nαβ is a (Nαα, Nββ)-bisystem.

Proof. (1) Obviously, Nαα is a subsemigroup of S and 1α is the identity of Nαα. Let

a, x, y ∈ Nαα. By Lemma 1.3 (1), 1αR∗a. If xa = ya, then x1α = y1α, so that x = y. It

follows that Nαα is a right cancellative monoid.

(2) By the definition of Nαβ, it is clear that Nαβ is (Nαα, Nββ)-bisystem. 2

Now let α, β, γ ∈ Q. Define a mapping φαβγ as follows:

φαβγ : Nαβ ⊗Nβγ → Nαγ; a⊗ b 7→ ab.
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Evidently, φαβγ is a (Nαα, Nββ)-homomorphism. It is not difficult to see that φαβγ satisfies

Condition (M).

Assume a1, a2 ∈ Nαβ, b ∈ Nβγ and a1b = a2b. Since 1βb = b 6= 0, we have bR∗1β by

Lemma 1.3 (1). From the equality a1b = a2b, this can show that a1 = a11β = a21β = a2,

so that Condition (C) holds.

Let c ∈ Nαβ, d ∈ Nβα and α 6= β. Note that 1αc = c 6= 0 and 1βd = d. We observe

that cR∗1α, dR∗1β. We claim: cdc 6= c. If not, then c is regular, cd 6= 0 and dc 6= 0. By

Lemma 1.3, the later two equalities imply that cdR∗c, dR∗dc. Hence cdR∗1α, dcR∗1β.

But cd, dc ∈ E(S), so cd = 1α and dc = 1β since S is a left ample semigroup. It follows

that 1αD1β, so that α = β, contrary to α 6= β. Therefore Condition (R) holds.

For any i ∈ Iα, we fix ai such that 1αRaiLi. It follows that 1α = aia
−1
i and i = a−1i ai,

where a−1i is the inverse of ai. Let s be an arbitrary element s of S. We have the following

lemma.

Lemma 3.3 There exists unique s◦ ∈ Nπσ such that s = a−1
s†
s◦as�, where s

� has the same

meaning as in Lemma 1.3, and π, σ ∈ Q such that s† ∈ Iπ, s� ∈ Iσ.

Proof. Because s† = a−1
s†
as† , 1π = as†a

−1
s†
, s� = a−1s� as� and 1σ = as�a

−1
s� , we have

s = s†ss� = a−1
s†
· as†sa−1s� · as� .

If s1 ∈ Nπσ such that s = a−1
s†
· s1 · as� , then a−1

s†
· s1 · as� = a−1

s†
· as†sa−1s� · as� , so that

s1 = 1πs11σ = as† · a−1s† s1as� · a
−1
s� = as†a

−1
s†
· as†sa−1s� · as�a−1s� = 1π · as†sa−1s� · 1σ

= as†sa
−1
s� .

This proves the lemma. 2

Form the PL blocked Rees matrix semigroup LABM(Nαβ;P,Q) and define

θ : S → LABM(Nαβ;P,Q); s 7→ (s◦, s†, s�), 0 7→ 0.

By Lemmas 1.3 (2) and 3.3, θ is well defined. Now let s, t ∈ S. If (s◦, s†, s�) = (t◦, t†, t�),

then s◦ = t◦, s† = t† and s� = t�. By Lemma 3.3, s = a−1
s†
s◦as� = a−1

t†
t◦at� = t, so that θ

is injective.
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Let (x, i, j) ∈ LABM(Nαβ;P,Q) with i ∈ Iα, j ∈ Iβ and x ∈ Nαβ. Then x = 1αx1β,

so that x = ai · a−1i xaj · a−1j since 1α = aia
−1
i and 1β = aja

−1
j . It follows that a−1i xaj 6= 0

since x 6= 0. Denote b = a−1i xaj. We have ib = ia−1i · xaj = b, hence by Lemma 1.3 (1),

iR∗b, in other words, b† = i. Also, b = bj, and further by Lemma 1.3 (2), b� = j. Now by

Lemma 3.3, b◦ = x. Therefore bθ = (x, i, j). This shows that θ is surjective.

Compute

(sθ)(tθ) = (s◦, s†, s�)(t◦, t†, t�) =

 0 if s� 6= t†

(s◦t◦, s†, t�) else.

On the other hand, we consider the following two cases:

• If st = 0, then st† = 0. We claim: s�t† = 0; if not, we have s� = s�t† = t† since

s�t† ≤ s�, t†, it follows that s = ss� = st† 6= 0, contrary to st† = 0. Thus by

Lemma 1.3 (3), s� 6= t†, so that (st)θ = 0 = (sθ)(tθ).

• If st 6= 0, then

(1) a−1
(st)†

(st)◦a(st)� = st = a−1
s†
s◦as�a

−1
t†
t◦at� = a−1

s†
s◦as� · s�t† · a−1t† t

◦at� ,

so s� = t† by Lemma 1.3 (3), hence

(2) a−1
(st)†

(st)◦a(st)� = st = a−1
s†
s◦as�a

−1
t†
t◦at� = a−1

s†
s◦t◦at�

Note that s† · st = st and st · (st)� = st = st · t�. By Lemma 1.3 (1) and (2),

we observe that s†R∗stR∗(st)† and t� = (st)�. The prior formulae implies that

s† = (st)† since S is a left ample semigroup. Now by Lemma 3.3 and Eq. (2), we

can obtain that (st)◦ = s◦t◦, so that (st)θ = (s◦t◦, s†, t�) = (sθ)(tθ).

However we have (st)θ = (sθ)(tθ). Consequently, θ is a homomorphism. We complete the

proof. 2

Definition 3.4 A primitive left ample semigroup S is called a PLARI- semigroup if for

any a ∈ S\{0}, aS 6= {0}.

Summarizing Proposition 2.1, and Theorems 2.2 and 3.1, we can obtain the structure

theorem of PLARI-semigroups.
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Theorem 3.5 A semigroup S is a PLARI-semigroup if and only if S is isomorphic to

some LA blocked Rees matrix semigroup.
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