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Abstract. In this paper, it is shown that a cancellative semigroup is embeddable in an inverse semigroup.
It is shown that finite proper *-semigroup is regular and any finite commutative proper *-semigroup is a
union of groups. Also it is shown that a finite cyclic proper * semigroup is a group while an infinite one
is *-embedded in a proper*-group, and any finite maximal proper*- semigroup has a proper *-extension
ring. It is shown that there is a nonregular proper *-ring that cannot be *-embedded in any regular
proper *-ring. Also it is shown that an Artinian proper *-ring is a finite direct product of matrix rings
over skew fields. It is shown that a commutative proper * and cancellative semigroup is *-embeddable in
a regular proper *-semigroup.
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1. Introduction

Let (9, %) be a *-semigroup with involution *. Then (5, ) is called a proper *-semigroup
(p*-semigroup) if for every a,b in S,aa* = ab* = bb* implies that a = b. A proper*-
*

semigroup which is a union of groups each of which is closed under the involution * is

called a strongly proper *-semigroup (sp*-semigroup). A ring with involution (*-ring)
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(R, *) is called a proper *-ring (p*-ring) if for a in R | aa® = 0 implies that a = 0. Let
(R, *) be a *-ring and n be a positive integer. We say that (R, *) is n-formally complex
if for every ry,...,r, in R, > rrf = 0 implies that all r; are 0. Let (S, %) be a proper*-
semigroup and let s, ¢, u be elements in S such that tss* = uss*. Thus ss*t* = ss*u*. Then
ts = us. This is called the *-cancellation law and can be seen by noticing that, under
the hypothesis, (ts)(ts)* = t.ss*t* = t.ss™u* = (ts)(us)* = tss*.u* = uss*.u* = (us)(us)*.
Then by using properness of * we get ts = us.

A *-semigroup (S, ) is called a maximal proper *-semigroup (mp*-semigroup) if for
every distinct elements sy, ..., s, in S, there exists an s; such that s;s; # s;s},j # 4, and
such that if s;57 = sis; then s}s, = s7s;;k, 0l = 1,...,n. For example an inverse semigroup
is an mp*-semigroup under the inverse involution. The converse need not be true, see [6].
Let (S, *) be a p*-semigroup and (R, %) be a p*-ring. We say that (S, x) is *-embeddable
in (R,x), or (R,x) *embeds (S,%) if there is a semigroup *-embedding f : S — R.
Thus f is injective and for every x,y in S, f(zy) = f(2)f(y), f(«*) = (f(z))*. Let (S, *)
be a p*-semigroup and let z be an element of S. We denote by S, =< zz* > the set
{(xz*)" : n € N}. In general if z is an element in a semigroup S then < x > denotes the
set of all positive exponents of x. A semigroup S is cyclic if there is an element a € S
such that S =< a >. Let S be a semigroup. An element z in a semigroup S is called
reqular if there is y in S such that zyx = x. If x is regular for all elements x in S we
say that S is regular. Let S be a regular semigroup and x € S. Thus there is y € §
such that xyx = x. Then we notice that r.yxy.x = x, yry.x.yry = yry. Denoting yry
by z we see that x has an inverse z such that xzx = x, 222 = 2. . A semigroup S is
called a 0-group if there is an element x such that (S\{xz},.) is a group and zg = gz = =
for all g in S. Let (S,*) be a semigroup. with involution. A *-congruence on S is an
equivalence relation ~ which is a *-congruence in the sense that whenever a¢”b in S then
a*"b*. Thus once a”b then a*"b* for all a,b € S. Then S is partitioned into equivalence
classes S/~ = {[a] : a € S}. We define multiplication on S/~ by setting [a]|[b] = [ab] for
all a,b € S. We define an involution on S/~ by setting [z]* = [z*]. If (5, %) is a semigroup

with involution then a similar proof to that given in ([2]) can be constructed to show
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that S/ is a semigroup with involution which is a *-homomorphic to (S,*) under the
*-homomorphism f : (S, %) = (5/7, ), f(a) = [a]. Thus f(a*) = (f(a))* = ([d])* = [a"]

foralla € S.

It was proved in [4] that there is a proper *-semigroup that cannot be *-embedded in
any p*-ring. The next question is: Given a p*-semigroup (5, *) does there exist a regular
p*-semigroup (7, %) that *-embeds (S,*)7. A related question is that given a p*-ring
(R, *) does there exist a regular p*-ring (7, %) that *-embeds (R, *)?

Malcev(see [3], p. 10) has exhibited a cancellative semigroup S which cannot be em-
bedded in any group. We will show that a left cancellative semigroup S can be embedded

in an inverse semigroup.
Remark 1. Let S be a regular left cancellative semigroup. Then S is a group.

For, let a € S . Thereis a’ € S, ad’a = a. Then aa’.aa’ = aa’. Now let ¢ € S. Then
ad’.aa’c = ad’c. Cancelling aa’ we get aa’.c = aa’ for all ¢ € S. Thus S has a left identity
which can be any ad’ for any a € S. Thus for every a € S there is a € S and ad’ is a left

identity. It follows that S is a group.

Proposition 1. (1) Let S be a left cancellative semigroup. Then S can be embedded in
an inverse semigroup.
(2) If (S,*)is a left cancellative p*-semigroup then it can be *-embedded in a regular

p*-semigroup.

Proof. (1) If S is finite then it is a group and we are done. In general for every element
x € S let [, be the mapping from S to S given by [,(s) = s for every elements € S.
Then [, is an injective mapping on S. The family L(S) = {l, : * € S} is a semigroup
under composition. For if z,y € S then [, o l,(s) = 1,(1,(5)) = l.(ys) = xy(s) = luy(s)
for all s € S. The mapping f : x — [, is injective. For if [, =, then [,(y) = [,(y) and
so xy = y* which implies that z = y since S is cancellative. The set T'(S) of all partial

injective transformations on a subset of S under composition of mappings is an inverse
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semigroup. 7(S) contains all [, such that x € S. Thus the mapping f is a semigroup
embedding of S into the inverse semigroup 7'(S). (See [2]).

(2) If S has a proper involution * then L(S) is again a semigroup with involution
defined by (l,)* = l,». This involution is proper for if (I,)(l,)* = (I,)(lz)* = (I,)(l,)*then
zy* = xz* = yy* and so v = y. This implies that [, = [,. Thus (5, %) is *-embeddable in

*_semigroup. This completes the proof. O

a regular proper
There is a finite reqular p*-semigroup (S, *) that cannot be *-embedded in any p*ring(
regular or not). (see [4]). We use this to show that there is a non-regular infinite p*-

semigroup (.5, %) that cannot be *-embedded in any regular p*-ring.

Example 1. Let N be the commutative semigroup of positive integers under multiplica-

*_semigroup (S, x) that cannot be *-embedded in any

tion. Consider a finite reqular proper
p*-ring and let * be the identity involution. Then (N,x*) is a non-reqular p*-semigroup.
Let T =S & N and define multiplication on T by (s,n).(s ',n') = (ss',nn ') for all
s,s’ €S and for all n,n’ in N. Define *on T by (s,n)* = (s*,n) for all s € S and for
alln € N. Then (T,x*) is a non-reqular p*-semigroup. We will show that (T,x) cannot
be *-embedded in any reqular p*-ring (R,*). For, if there is such a proper *-ring (R, *)
then the p*-ring (R, *) would contain an isomorphic copy of (S,*), namely (S @ {1}, %)

and we know that there is no p*-ring containing (S, *). This is a contradiction.
We prove below some properties of regular p*-semigroups and regular p*-rings.

Proposition 2. Let (S, %) be a finite p*-semigroup. Then
(1) S is a regular p*-semigroup.
(2) If x is a non-zero element in S then S, =< xx* > is a group.

(8) If S is cyclic p*-semigroup then S is a cyclic group.

Proof. (1) If z is a zero element of S then x is regular and S, = {0} is a group. Let
x be a non zero element in S. Then xz* and all of its powers are different from zero
by properness of * and by *-cancellation. Then S, being the set of all positive powers

of zx*, is a finite cyclic subsemigroup. Let n be the first positive integer such that
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(zx*)" = (z2*)*, 1 < k < n. The pair (k,n) must exist since zz* # 0 and by properness
of *. Then (za*)" *(zx*)k = (xz*)k. If we use the *-cancellation law repeatedly, we get
(zx*)" "1 = (xz*). If k > 1, we have a contradiction with the minimality of n and so
k = 1.Thus (zz*)" = (xz*). Let a = zz*. Then a" ! acts as an identity e in S, and
S, = {e,a,a?, ...,a"?} and so S, is a cyclic group generated by a.
(2) Let = be an element in S. If z = 0 then 0.0.0 = 0 and so z is regular. If z is a
non-zero element in S then as shown above < xzx* > is a finite group and so there is a

"=l ¢ =2 and soz

positive integer n > 1 such that (zz*)" = xa*. By *-cancellation (xz*)
is regular for all z € S and so S is regular.

(3) Let S =< 2« > and let m be the number of elements in S. If m = 1 then S is a
trivial group. Let m > 1. We will show that 2™ = z. Since S is finite there is a pair
(n,k),1 <k <n <m+1such that 2™ = z*, and let this (n, k) be the first such pair.
It follows that £ = m + 1 for otherwise the number of elements in .S would be less than

n.Thus (m+ 1, k) is the first pair. Assume k& > 1. Now z is the only generator for S since

k > 1. Thus * = = because z* is a generator for S and S =< z >= 5" =< z* >. Now

oM = Im—i—l'xm—l — l’k.l’m_l — xm—&-k’—l — Im+137k_2
= 2P b2 = b1 2P Also
kTl = gt gh2 = gk k=2 — k=1 k=1 Since x = ¥, it follows by properness

of * that 2™ = z¥~1. This is a contradiction with the choice of (m + 1,k) as a first pair
rather than (m, k). Thus £ = 1. Since m > 1, then z is not a zero element. Thus S is a
finite cyclic group.

Here is another proof: Let m > 1. Then z* = x, otherwise * is not surjective. Since
2" = aF n > k we can verify easily that %=1 (zF=1)* = 2k~ 1(zn~1)* = gn~1 (2"~ 1)*. Thus
if * is proper then z*~! = 2"~! contrary to the choice of the pair (n, k) as a first pair with

2™ = z* n > k. This completes the proof. O]

Remark 2. If S =< x > is a finite cyclic group of order n with involution * . Let

¥ = a™. From ™ = x we have m*> =1 mod n. Thus m is a unit in the ring Z,whose

square is 1.



6 ADEL A. ABDELKARIM

Remark 3. Not every regqular p*-semigroup is a strongly p*-semigroup(i.e. a union of

groups). For this to hold, it is necessary and sufficient that Vx in S,3n,, 2" = x.
We give below some counter examples.

Example 2. Let (R,t) be the *-ring of 2 x 2 matrices over the ring Z; with the transpose

involution t. Since a® + b* = 0 implies that a = 0 = b,Va,b in R, it is easily checked

1 2
that (R,t) is a p*-ring, and hence it is reqular by Proposition 2. Let A = . It s

2 4
easily checked that A* = A% # I and that this is the first equality of two positive powers

of A. Thus A cannot belong to a subgroup inside R. This example gives a finite regular

p*-semigroup which is not strongly proper. This semigroup is not an inverse semigroup.

0 11 1 2
To see this we take B = ,C = D=

00 11 2 4|
We notice that BCB = B,CBC = C,BDB = B,DBD = D. Thus B has two inverses

C, D. Thus this example serves as an example of a finite reqular proper *-semigroup which

is neither an inverse semigroup nor an sp*- semigroup.

Example 3. Consider the following matrices in Mz(Z)
010 000 0 00 1 00

r=1000|,y=22=1000|,u=l010|,w=1]00 0

0 01 0 01 0 01 0 01
Let S = {z,y,z,u,v}. Then S is a semigroup under multiplication. In fact it has the

following multiplication table

Tl ly|zlu|lw

r |2 |W|Z2|T|Z

ylulz|z|lz|ly

We notice that the only idempotents are z,u, and w and that these elements commute;
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thus S is an inverse semigroup. We notice that x # x* = 23, and hence x cannot be-
long to a subgroup inside S. This serves as an example of a finite inverse (and hence a

*

p*-semigroup) which is not a strongly proper *-semigroup under its inverse involution.

We now prove the following.

Proposition 3. Let (S,%) be a finite mp*-commutative semigroup. Then (S,%) is a

strongly p*-semigroup.

Proof. Let  # 0 be an element of S. Then < x,z* > is finite. Let (k,n) be a pair
of positive integers such that 1 < k < n and 2 = 2", 2" = 2*. Such a pair must
exists since S is finite. Let a = zz*. Then from properness of * and commutativity
a #0,a* = a™. Then as in the proof of proposition 2, £ = 1. Thus for every x in S there

is a positive integer n such that ™ = x. Thus S is strongly proper. This completes the

proof. O

Proposition 4. (1) Let (R,*) be an Artinean proper *-ring. Then R is a finite direct
product of matrix rings over skew fields and so it is reqular.

(2) If (R, %) is finite then R is a finite direct product of matriz rings each of which is
over a field. (3) If (R,x*) is a finite commutative proper *-ring then it is a finite direct
product of finite fields.

Proof. (1) R is nil-semisimple. For let A be an element in a nilpotent ideal I in R. Then
AA*isin I and so it is nilpotent. Thus there is a positive integer n such that (AA*)" = 0.
By *-cancellation then A = 0. Thus R is nil-semisimple. Since it is Artinean then by
Wedderburn’s theorem it is a finite direct product of matrix rings each over a skew field
and so R is regular.

(2) If R is finite then each matrix ring is over a finite skew field and hence a field.

(3) If (R, %) is a finite commutative p*-ring then the corresponding matrix rings are all

of size 1 by 1 owing to commutativity of R. This completes the proof. O

2. Regular *embedding of Some Proper *-Semigroup
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Proposition 5. Let (S,%) be a finite mp*- semigroup of order m and let (R,*) be an
n-formally complex *-ring with m < n. Then (R[S],*) is a p*ring. If R is finite then
(R[S], ) is a regular p*-ring embedding of (S, *).

Proof. : Since A = Y2 r;s; in (R[S], %) implies that & < n, the proof that (R[S], ) is

proper* is the same as the proof given in [7]. This completes the proof. O

Let (S, %) be a finite semigroup with involution *. By Maschke’s theorem we can choose
a field F' such that F[S] is regular, see for example Clifford and Preston book [1]. Let
* be any involution on F. Define an involution * on F[S] by (D> a;s;)* = > afs;. Then
(F'[S], *) is a regular *-ring which *-embeds (S, *). But this involution, although extends
that on .S, may not be proper.

In spite of this, there is a finite p*-semigroup not *-embeddable in any p*-ring (regular

or not). See [4]. Also refer to examples 4 and 6.

Proposition 6. . Let (S, x) be a proper-*cyclic semigroup. Then (S, *) is *-embeddable

in a reqular p*-semigroup.

Proof. It S is finite then it is regular as has been shown in 3 of proposition 2. Let S be
infinite and let  be an element in S. Let z* = 2™, m > 0. If m > 1. Let y = za*.
Then y = y*. But 2™ =y = y* = (*)™*! = ™™D Thus S is finite and this is a
contradiction. Thus m = 1 and so * is the identity involution. Then (S, %) ~ (ZT, +,id)
and the latter can be *-embedded in (Z, 4, id) which is a group. The identity mapping is

a proper involution on (Z,4). This completes the proof. O

Proposition 7. Let (S, x) be a proper*-semigroup and let x be an element in S such that
Sy =< xx* > s finite or such that < x > is finite and x commutes with x*. Then x is

reqular.

Proof. Let x be an element such that S, be finite and let a = xx*. Then S, =< a > and

a = a*. Let (k,n) be a pair of positive integers, 1 < k < n, be such that a* = a”. Then



REGULAR P*EMBEDDING OF P*-SEMIGROUPS AND RINGS 9

be *-cancellation it follows that ¢ **!

= a and so S, is a group. Then using the same
argument as used in the previous proposition 6 it follows that x is regular.
If < 2 > is finite and x commutes with z* then za* # 0 and < z* > is finite. It follows

that < xza* > is finite and we use the same argument above to deduce that x is regular.

This completes the proof. O

Proposition 8. Let (S, *) be a commutative 0- cancellative p*-semigroup. Then there is

a reqular p*-semigroup (T, *) which *-embeds (S, *).

Proof. Since for all s € S, s** = s, it follows that S* = S. Since for all s € S,0* = (0.5)* =
s*.0* it follows that 0* = 0*s for all s € S. Thus 0* = 0*.0 = 0. Thus for all s € §,s* =
0 < s = 0. Since S has no zero divisors, 7' = S\{0} is a subsemigroup closed under * and
so it is a proper *-subsemigroup of S. Let W = T'® S. We define multiplication on W by
(t1,51)(te, s2) = (t1ta, s159) for all t1,t5 € T and for all s1,s, € S. We define involution
on W by (s,t)* = (s*,t*) for all (s,t) € W. We notice that this involution is proper. For
let (t1,s1), (t2,52) € W be such that (t1,s1)(t1, s1)* = (1, 51)(t2, 52)" = (ta, $2)(ta, $2)*.

* is proper in S it follows that

Then t1t] = t1t5 = toth, 5157 = s155 = S255. Since
t1 = t3,81 = s9 as required. Thus (W, %) is a proper *-semigroup. Next we define a
relation ~ on W be declaring that (¢1,s1) (2, s2) if and only if ¢85 = s1t5. Then 7 is
reflexive and symmetric. Let (t1, 1) (t2, S2), (t2, s2) " (t3, s3). Then t1s9 = tosy, tas3 = t3Ss.
Then t185ta83 = tosit3ss. Then by cancelling to, 15283 = s1t382. Now if s = 0 then
tasy = 0 = tgs3. Since ty # 0,81 = 0 = s3. This implies that t;s3 = s1t3, and so
(t1,51) (t3,83). On the other hand if sy # 0 then from t;s583 = s1t389, by cancellation
t1s3 = sits. Thus again (t1,s1) (t3,s3). Thus 7 is transitive. We show that ~ is a
congruence. Let (t1,s1) (ta, $2), (t,s) € W. Then t;s9 = t3s;. We need to show that
(t1t, 518) " (tat, S28), or t1t.ss = s18.lot and this is true. Let the class [(a,b)] in W be
denoted by a/b for all (a,b) € W. Thus W/~ = {a/b : b € T,a € S} is a semigroup.
We define an involution * on W/~ by (a/b)* = a*/b* for all a/b € W/™. This is well-

defined. For let a/b = ¢/d. Then ad = bc and so d*a* = ¢*b*. Thus a*/b* = ¢*/d*. Also
(a/0)™ = a/b,(a/b.c/d)” = (ac/bd)" = (ac)"/(bd)" = (c*a®)/(d"D")
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= ¢*/d*.a*/b* = (¢/d)*.(a/b)*, for all a/b,c/d € W/~. This involution is proper. For
let (a/b.a/b)* = (a/b.c/d)* = (¢/d.c/d)*,b,d # 0. Then aa*/bb* = ac*/bd* = cc*/dd * .
Then aa*bd* = bb*ac*, ac*dd* = bd*cc*, aa*dd* = bb*cc*. We need to show that a/b = ¢/d
or ad = bc. By cancellation aa* d* = b*ac*. If a = 0 then bb*cc* = 0,b # 0. Then cc* =0
and so ¢ = 0. It follows that ad = bc as required. On the other hand if a # 0 then from

aa* d* = b*ac* we get a* d* = b*c* and so da = cb as required. Thus (W/7 %) is a
proper *-semigroup. Now we see that W/~ is regular. For let a/b € W/™. If a = 0 then
a/b.a/b.a/b = a/b. On the other hand if a # 0 then a/b.b/a.a/b = aba/bab = a/b since
abab = abab. Finally we show that there is a *-embedding f : (S, %) — (W/7,*) given
by f(a) = ab/b where b is some fixed non zero element in S. For if f(a) = f(c) then
ab/b = ¢b/b and so abb = cbb from which we get a = b. Also f(ac) = acb/b = ab/b.cb/b
= f(a)f(c) because ach® = achb®>. And f(a*) = a*b/b = a*b*/b* = (f(a))* because
a*bb* = a*bb*. This completes the proof. O

3. Two Counter Examples

Example 4. Let S be the multiplicative group generated by the matriz A = ;1 232
i

We notice that A=t = At. Now (S, %) under the inverse involution (which is the transpose
involution) is a proper *-semigroup: aa™' = ab™! = bb~Limplies that a = b for all a,b € S.
It is to be noticed that S is an infinite cyclic group. This is a Z—module with involution
defined by (> m;A™)* = > m;A~™i m; € Z. This is the same as the semigroup ring
with involution (Z[S], %) where x is as defined above. Since Z is a formally complex ring
under the identity involution and since (S,*) is an inverse it follows that (Z[S], %) is a
proper *-ring. This not regqular if we take 2A then there is no element in Z[S] of the
C = > m;A™ such that 2AC.2A = 2A then taking absolute values of determinants of
both sides would give 28k = 2* where k is a positive integer and this is impossible. We
claim that the proper *-ring (Z|[S], *) cannot be *-embedded in any reqular proper *-ring .

For assume that (Z|[S], *) is *-embedded in a regular proper *-ring (R, ). We notice that
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~5 6 7 8i 2 2 .
A3 = A = ,B=A%— At = . Then in (R, *)
6 7 8 9 -2 =2

we have BB* = 0. This implies that A*> = A* in (R, ) although A3 # A%in (Z[S], *) and

this is a contradiction.

a b
Example 5. Consider the set S of matrices of kind ya,b k€ Z[x]. We
ka kb

restrict a to be a polynomial of nonzero constant term and b to be a polynomial without
constant term. Then S is closed under multiplication as can be easily verified. We notice
that the two columns as well as the two rows in any of these matrices are linearly dependent
and that S is closed under the transposition involution. Also we notice that this involution
is proper for there is no nonzero matriz A in S such that AA* = AA* = 0. Thus (S,t)
is a proper *-semigroup. Now consider the multiplicative semigroup T = Mo(Q(i)(x)) of
all 2 by 2 matrices with entries as rational functions in x and with coefficients from the
field Q[i]. This semigroup (S,t) is a semigroup with the transpose involution t. But this
inwvolution is not proper.

Assume that there is a smallest proper *semigroup (W,t) in (T,t) that contains (S,1).

1+2x iz a b
Consider the matriz A = € S. Then there is a matric B = €
0 0 c d
1+2x a b 1+2x ix
W such that ABA = A, BAB = B. Thus =
c d
1+2x ix a b 1+x ix a
, = Carrying out the
0 0 c d 0 0 c d c
b
necessary calculations we find that B = = € W. But we notice
c d i —1

that BB* = 0 and so (W,t), although reqular and contains (S,t), is not a proper *-

SeEMigroup.

Example 6. In this example we exhibit a p*-semigroup which is not reqular and can be

*_embedded in a reqular p*-semigroup yet it cannot be *-embedded in any reqular p*-ring.

Let R = M,y([2Z][i]) be the ring of all 2 x 2 matrices with entries from the ring [2Z][i].
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Let S be the subsemigroup of R (under multiplication) generated by the elements ae;;,
where a = 0,2 or 2i and e;; is the matriz with 0 everywhere except the ij—entry, which
1s 1. Let s1 = 2eq1 and sy = 2ie1s. Then sy, s9 are in S. Let t be the transpose involution
on S. Then (S, %) is a non-regular p*-semigroup. Let T' be the set {qei;,q € Q}. Then
(T,t) is a regular p*-semigroup which *~embeds (S,t). We claim that (S,t) cannot be
*-embedded in any p*-ring (reqular or not). Otherwise, let f be a *-embedding of (S,1)
into a proper*-ring (W,x). Then (R,t) has a ring homomorphic image in (W, x), because
the elements of S form a basis for the free Z-module R and W is a Z-module which
contains S. Let us call such a homomorphism by f~. Then f~ is [2Z][i]—linear and it
extends f. The involution * on W extends t in the sense that f~(A") = (f~(A))*. Now
t is not a proper involution on R since if A is the non zero matriz with first row being
(2, —2i), and the second row being the zero row then A = s; — sy € R and AA' = 0. Thus
f(AAY) =0 = f~(A)(f(A)* in W. Since (W, x) is a p*-ring it follows that f(A) =0
in W. Thus 0 = f~(s1) — f~(s2) in W. But then f(s1) = f(s2) in W and this is a

contradiction.
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