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Abstract. In this paper, it is shown that a cancellative semigroup is embeddable in an inverse semigroup.

It is shown that finite proper *-semigroup is regular and any finite commutative proper *-semigroup is a

union of groups. Also it is shown that a finite cyclic proper * semigroup is a group while an infinite one

is *-embedded in a proper*-group, and any finite maximal proper*- semigroup has a proper *-extension

ring. It is shown that there is a nonregular proper *-ring that cannot be *-embedded in any regular

proper *-ring. Also it is shown that an Artinian proper *-ring is a finite direct product of matrix rings
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1. Introduction

Let (S, ∗) be a *-semigroup with involution *. Then (S, ∗) is called a proper *-semigroup

(p*-semigroup) if for every a, b in S, aa∗ = ab∗ = bb∗ implies that a = b. A proper*-

semigroup which is a union of groups each of which is closed under the involution * is

called a strongly proper *-semigroup (sp*-semigroup). A ring with involution (*-ring)
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(R, ∗) is called a proper *-ring (p*-ring) if for a in R , aa∗ = 0 implies that a = 0. Let

(R, ∗) be a *-ring and n be a positive integer. We say that (R, ∗) is n-formally complex

if for every r1, ..., rn in R,
∑

rir
∗
i = 0 implies that all ri are 0. Let (S, ∗) be a proper*-

semigroup and let s, t, u be elements in S such that tss∗ = uss∗. Thus ss∗t∗ = ss∗u∗. Then

ts = us. This is called the *-cancellation law and can be seen by noticing that, under

the hypothesis, (ts)(ts)∗ = t.ss∗t∗ = t.ss∗u∗ = (ts)(us)∗ = tss∗.u∗ = uss∗.u∗ = (us)(us)∗.

Then by using properness of * we get ts = us.

A *-semigroup (S, ∗) is called a maximal proper *-semigroup (mp*-semigroup) if for

every distinct elements s1, ..., sn in S, there exists an si such that sis
∗
i 6= sis

∗
j , j 6= i, and

such that if sis
∗
i = sks

∗
l then s∗i sk = s∗i sl; k, l = 1, ..., n. For example an inverse semigroup

is an mp*-semigroup under the inverse involution. The converse need not be true, see [6].

Let (S, ∗) be a p*-semigroup and (R, ∗) be a p*-ring. We say that (S, ∗) is *-embeddable

in (R, ∗), or (R, ∗) *-embeds (S, ∗) if there is a semigroup *-embedding f : S → R.

Thus f is injective and for every x, y in S, f(xy) = f(x)f(y), f(x∗) = (f(x))∗. Let (S, ∗)

be a p*-semigroup and let x be an element of S. We denote by Sx =< xx∗ > the set

{(xx∗)n : n ∈ N}. In general if x is an element in a semigroup S then < x > denotes the

set of all positive exponents of x. A semigroup S is cyclic if there is an element a ∈ S

such that S =< a >. Let S be a semigroup. An element x in a semigroup S is called

regular if there is y in S such that xyx = x. If x is regular for all elements x in S we

say that S is regular. Let S be a regular semigroup and x ∈ S. Thus there is y ∈ S

such that xyx = x. Then we notice that x.yxy.x = x, yxy.x.yxy = yxy. Denoting yxy

by z we see that x has an inverse z such that xzx = x, zxz = z. . A semigroup S is

called a 0-group if there is an element x such that (S\{x}, .) is a group and xg = gx = x

for all g in S. Let (S, ∗) be a semigroup. with involution. A *-congruence on S is an

equivalence relation ˜ which is a *-congruence in the sense that whenever a˜b in S then

a∗˜b∗. Thus once a˜b then a∗˜b∗ for all a, b ∈ S. Then S is partitioned into equivalence

classes S/˜ = {[a] : a ∈ S}. We define multiplication on S/˜ by setting [a][b] = [ab] for

all a, b ∈ S. We define an involution on S/˜ by setting [x]∗ = [x∗]. If (S, ∗) is a semigroup

with involution then a similar proof to that given in ([2]) can be constructed to show
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that S/˜ is a semigroup with involution which is a *-homomorphic to (S, ∗) under the

*-homomorphism f : (S, ∗) → (S/˜, ∗), f(a) = [a]. Thus f(a∗) = (f(a))∗ = ([a])∗ = [a∗]

for all a ∈ S.

It was proved in [4] that there is a proper *-semigroup that cannot be *-embedded in

any p*-ring. The next question is: Given a p*-semigroup (S, ∗) does there exist a regular

p*-semigroup (T, ∗) that *-embeds (S, ∗)?. A related question is that given a p*-ring

(R, ∗) does there exist a regular p*-ring (T, ∗) that *-embeds (R, ∗)?

Malcev(see [3], p. 10) has exhibited a cancellative semigroup S which cannot be em-

bedded in any group. We will show that a left cancellative semigroup S can be embedded

in an inverse semigroup.

Remark 1. Let S be a regular left cancellative semigroup. Then S is a group.

For, let a ∈ S . There is a′ ∈ S, aa′a = a. Then aa′.aa′ = aa′. Now let c ∈ S. Then

aa′.aa′c = aa′c. Cancelling aa′ we get aa′.c = aa′ for all c ∈ S. Thus S has a left identity

which can be any aa′ for any a ∈ S. Thus for every a ∈ S there is a ∈ S and aa′ is a left

identity. It follows that S is a group.

Proposition 1. (1) Let S be a left cancellative semigroup. Then S can be embedded in

an inverse semigroup.

(2) If (S, ∗)is a left cancellative p*-semigroup then it can be *-embedded in a regular

p*-semigroup.

Proof. (1) If S is finite then it is a group and we are done. In general for every element

x ∈ S let lx be the mapping from S to S given by lx(s) = xs for every elements ∈ S.

Then lx is an injective mapping on S. The family L(S) = {lx : x ∈ S} is a semigroup

under composition. For if x, y ∈ S then lx ◦ ly(s) = lx(ly(s)) = lx(ys) = xy(s) = lxy(s)

for all s ∈ S. The mapping f : x → lx is injective. For if lx = ly then lx(y) = ly(y) and

so xy = y2 which implies that x = y since S is cancellative. The set T (S) of all partial

injective transformations on a subset of S under composition of mappings is an inverse
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semigroup. T (S) contains all lx such that x ∈ S. Thus the mapping f is a semigroup

embedding of S into the inverse semigroup T (S). (See [2]).

(2) If S has a proper involution * then L(S) is again a semigroup with involution

defined by (lx)∗ = lx∗ . This involution is proper for if (lx)(ly)
∗ = (lx)(lx)∗ = (ly)(ly)

∗then

xy∗ = xx∗ = yy∗ and so x = y. This implies that lx = ly. Thus (S, ∗) is *-embeddable in

a regular proper *-semigroup. This completes the proof. �

There is a finite regular p*-semigroup (S, ∗) that cannot be *-embedded in any p*ring(

regular or not). (see [4]). We use this to show that there is a non-regular infinite p*-

semigroup (S, ∗) that cannot be *-embedded in any regular p*-ring.

Example 1. Let N be the commutative semigroup of positive integers under multiplica-

tion. Consider a finite regular proper *-semigroup (S, ∗) that cannot be *-embedded in any

p*-ring and let * be the identity involution. Then (N, ∗) is a non-regular p*-semigroup.

Let T = S ⊕ N and define multiplication on T by (s, n).(s ′, n ′) = (ss ′, nn ′) for all

s, s ′ ∈ S and for all n, n ′ in N . Define * on T by (s, n)∗ = (s∗, n) for all s ∈ S and for

all n ∈ N . Then (T, ∗) is a non-regular p*-semigroup. We will show that (T, ∗) cannot

be *-embedded in any regular p*-ring (R, ∗). For, if there is such a proper *-ring (R, ∗)

then the p*-ring (R, ∗) would contain an isomorphic copy of (S, ∗), namely (S ⊕ {1}, ∗)

and we know that there is no p*-ring containing (S, ∗). This is a contradiction.

We prove below some properties of regular p*-semigroups and regular p*-rings.

Proposition 2. Let (S, ∗) be a finite p*-semigroup. Then

(1) S is a regular p*-semigroup.

(2) If x is a non-zero element in S then Sx =< xx∗ > is a group.

(3) If S is cyclic p*-semigroup then S is a cyclic group.

Proof. (1) If x is a zero element of S then x is regular and Sx = {0} is a group. Let

x be a non zero element in S. Then xx∗ and all of its powers are different from zero

by properness of * and by *-cancellation. Then Sx, being the set of all positive powers

of xx∗, is a finite cyclic subsemigroup. Let n be the first positive integer such that
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(xx∗)n = (xx∗)k, 1 ≤ k < n. The pair (k, n) must exist since xx∗ 6= 0 and by properness

of *. Then (xx∗)n−k(xx∗)k = (xx∗)k. If we use the *-cancellation law repeatedly, we get

(xx∗)n−k+1 = (xx∗). If k > 1, we have a contradiction with the minimality of n and so

k = 1.Thus (xx∗)n = (xx∗). Let a = xx∗. Then an−1 acts as an identity e in Sx and

Sx = {e, a, a2, ..., an−2} and so Sx is a cyclic group generated by a.

(2) Let x be an element in S. If x = 0 then 0.0.0 = 0 and so x is regular. If x is a

non-zero element in S then as shown above < xx∗ > is a finite group and so there is a

positive integer n > 1 such that (xx∗)n = xx∗. By *-cancellation (xx∗)n−1.x = x and so x

is regular for all x ∈ S and so S is regular.

(3) Let S =< x > and let m be the number of elements in S. If m = 1 then S is a

trivial group. Let m > 1. We will show that xm+1 = x. Since S is finite there is a pair

(n, k), 1 ≤ k < n ≤ m + 1 such that xn = xk, and let this (n, k) be the first such pair.

It follows that k = m + 1 for otherwise the number of elements in S would be less than

n.Thus (m+ 1, k) is the first pair. Assume k > 1. Now x is the only generator for S since

k > 1 . Thus x∗ = x because x∗ is a generator for S and S =< x >= S∗ =< x∗ >. Now

xm.xm = xm+1.xm−1 = xk.xm−1 = xm+k−1 = xm+1xk−2

= xk.xk−2 = xk−1.xk−1. Also

xm.xk−1 = xm+1.xk−2 = xk.xk−2 = xk−1.xk−1. Since x = x∗, it follows by properness

of * that xm = xk−1. This is a contradiction with the choice of (m + 1, k) as a first pair

rather than (m, k). Thus k = 1. Since m > 1, then x is not a zero element. Thus S is a

finite cyclic group.

Here is another proof: Let m > 1. Then x∗ = x, otherwise * is not surjective. Since

xn = xk, n > k we can verify easily that xk−1(xk−1)∗ = xk−1(xn−1)∗ = xn−1.(xn−1)∗. Thus

if * is proper then xk−1 = xn−1 contrary to the choice of the pair (n, k) as a first pair with

xn = xk, n > k. This completes the proof. �

Remark 2. If S =< x > is a finite cyclic group of order n with involution * . Let

x∗ = xm. From x∗∗ = x we have m2 = 1 mod n. Thus m is a unit in the ring Znwhose

square is 1.
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Remark 3. Not every regular p*-semigroup is a strongly p*-semigroup(i.e. a union of

groups). For this to hold, it is necessary and sufficient that ∀x in S,∃nx, x
nx = x.

We give below some counter examples.

Example 2. Let (R, t) be the *-ring of 2×2 matrices over the ring Z7 with the transpose

involution t. Since a2 + b2 = 0 implies that a = 0 = b,∀a, b in R, it is easily checked

that (R, t) is a p*-ring, and hence it is regular by Proposition 2. Let A =

 1 2

2 4

. It is

easily checked that A4 = A2 6= I and that this is the first equality of two positive powers

of A. Thus A cannot belong to a subgroup inside R. This example gives a finite regular

p*-semigroup which is not strongly proper. This semigroup is not an inverse semigroup.

To see this we take B =

1 0

0 0

 , C =

1 1

1 1

 , D =

1 2

2 4

.

We notice that BCB = B,CBC = C,BDB = B,DBD = D. Thus B has two inverses

C,D. Thus this example serves as an example of a finite regular proper *-semigroup which

is neither an inverse semigroup nor an sp*- semigroup.

Example 3. Consider the following matrices in M3(Z)

x =


0 1 0

0 0 0

0 0 1

 , y = xt, z =


0 0 0

0 0 0

0 0 1

 , u =


0 0 0

0 1 0

0 0 1

 , w =


1 0 0

0 0 0

0 0 1

.

Let S = {x, y, z, u, v}. Then S is a semigroup under multiplication. In fact it has the

following multiplication table

. x y z u w

x z w z x z

y u z z z y

z z z z z z

u z y z u z

w x z z z w

.

We notice that the only idempotents are z, u, and w and that these elements commute;
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thus S is an inverse semigroup. We notice that x 6= x2 = x3, and hence x cannot be-

long to a subgroup inside S. This serves as an example of a finite inverse (and hence a

p*-semigroup) which is not a strongly proper *-semigroup under its inverse involution.

We now prove the following.

Proposition 3. Let (S, ∗) be a finite mp*-commutative semigroup. Then (S, ∗) is a

strongly p*-semigroup.

Proof. Let x 6= 0 be an element of S. Then < x, x∗ > is finite. Let (k, n) be a pair

of positive integers such that 1 ≤ k < n and xk = xn, x∗k = x∗n. Such a pair must

exists since S is finite. Let a = xx∗. Then from properness of * and commutativity

a 6= 0, ak = an. Then as in the proof of proposition 2, k = 1. Thus for every x in S there

is a positive integer n such that xn = x. Thus S is strongly proper. This completes the

proof. �

Proposition 4. (1) Let (R, ∗) be an Artinean proper *-ring. Then R is a finite direct

product of matrix rings over skew fields and so it is regular.

(2) If (R, ∗) is finite then R is a finite direct product of matrix rings each of which is

over a field. (3) If (R, ∗) is a finite commutative proper *-ring then it is a finite direct

product of finite fields.

Proof. (1) R is nil-semisimple. For let A be an element in a nilpotent ideal I in R. Then

AA∗ is in I and so it is nilpotent. Thus there is a positive integer n such that (AA∗)n = 0.

By *-cancellation then A = 0. Thus R is nil-semisimple. Since it is Artinean then by

Wedderburn’s theorem it is a finite direct product of matrix rings each over a skew field

and so R is regular.

(2) If R is finite then each matrix ring is over a finite skew field and hence a field.

(3) If (R, ∗) is a finite commutative p*-ring then the corresponding matrix rings are all

of size 1 by 1 owing to commutativity of R. This completes the proof. �

2. Regular *embedding of Some Proper *-Semigroup
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Proposition 5. Let (S, ∗) be a finite mp*- semigroup of order m and let (R, ∗) be an

n-formally complex *-ring with m ≤ n. Then (R[S], ∗) is a p*-ring. If R is finite then

(R[S], ∗) is a regular p*-ring embedding of (S, ∗).

Proof. : Since A =
∑k

i=1 risi in (R[S], ∗) implies that k ≤ n, the proof that (R[S], ∗) is

proper* is the same as the proof given in [7]. This completes the proof. �

Let (S, ∗) be a finite semigroup with involution *. By Maschke’s theorem we can choose

a field F such that F [S] is regular, see for example Clifford and Preston book [1]. Let

* be any involution on F . Define an involution * on F [S] by (
∑

aisi)
∗ =

∑
a∗i s
∗
i . Then

(F [S], ∗) is a regular *-ring which *-embeds (S, ∗). But this involution, although extends

that on S, may not be proper.

In spite of this, there is a finite p*-semigroup not *-embeddable in any p*-ring (regular

or not). See [4]. Also refer to examples 4 and 6.

Proposition 6. . Let (S, ∗) be a proper-*cyclic semigroup. Then (S, ∗) is *-embeddable

in a regular p*-semigroup.

Proof. If S is finite then it is regular as has been shown in 3 of proposition 2. Let S be

infinite and let x be an element in S. Let x∗ = xm,m > 0. If m > 1. Let y = xx∗.

Then y = y∗. But xm+1 = y = y∗ = (x∗)m+1 = xm(m+1). Thus S is finite and this is a

contradiction. Thus m = 1 and so * is the identity involution. Then (S, ∗) ≈ (Z+,+, id)

and the latter can be *-embedded in (Z,+, id) which is a group. The identity mapping is

a proper involution on (Z,+). This completes the proof. �

Proposition 7. Let (S, ∗) be a proper*-semigroup and let x be an element in S such that

Sx =< xx∗ > is finite or such that < x > is finite and x commutes with x∗. Then x is

regular.

Proof. Let x be an element such that Sx be finite and let a = xx∗. Then Sx =< a > and

a = a∗. Let (k, n) be a pair of positive integers, 1 ≤ k < n, be such that ak = an. Then
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be *-cancellation it follows that an−k+1 = a and so Sx is a group. Then using the same

argument as used in the previous proposition 6 it follows that x is regular.

If < x > is finite and x commutes with x∗ then xx∗ 6= 0 and < x∗ > is finite. It follows

that < xx∗ > is finite and we use the same argument above to deduce that x is regular.

This completes the proof. �

Proposition 8. Let (S, ∗) be a commutative 0- cancellative p*-semigroup. Then there is

a regular p*-semigroup (T, ∗) which *-embeds (S, ∗).

Proof. Since for all s ∈ S, s∗∗ = s, it follows that S∗ = S. Since for all s ∈ S, 0∗ = (0.s)∗ =

s∗.0∗ it follows that 0∗ = 0∗s for all s ∈ S. Thus 0∗ = 0∗.0 = 0. Thus for all s ∈ S, s∗ =

0⇔ s = 0. Since S has no zero divisors, T = S\{0} is a subsemigroup closed under * and

so it is a proper *-subsemigroup of S. Let W = T ⊗S. We define multiplication on W by

(t1, s1)(t2, s2) = (t1t2, s1s2) for all t1, t2 ∈ T and for all s1, s2 ∈ S. We define involution

on W by (s, t)∗ = (s∗, t∗) for all (s, t) ∈ W . We notice that this involution is proper. For

let (t1, s1), (t2, s2) ∈ W be such that (t1, s1)(t1, s1)
∗ = (t1, s1)(t2, s2)

∗ = (t2, s2)(t2, s2)
∗.

Then t1t
∗
1 = t1t

∗
2 = t2t

∗
2, s1s

∗
1 = s1s

∗
2 = s2s

∗
2. Since * is proper in S it follows that

t1 = t2, s1 = s2 as required. Thus (W, ∗) is a proper *-semigroup. Next we define a

relation ˜ on W be declaring that (t1, s1)˜(t2, s2) if and only if t1s2 = s1t2. Then ˜ is

reflexive and symmetric. Let (t1, s1)˜(t2, s2), (t2, s2)˜(t3, s3). Then t1s2 = t2s1, t2s3 = t3s2.

Then t1s2t2s3 = t2s1t3s2. Then by cancelling t2, t1s2s3 = s1t3s2. Now if s2 = 0 then

t2s1 = 0 = t2s3. Since t2 6= 0, s1 = 0 = s3. This implies that t1s3 = s1t3, and so

(t1, s1)˜(t3, s3). On the other hand if s2 6= 0 then from t1s2s3 = s1t3s2, by cancellation

t1s3 = s1t3. Thus again (t1, s1)˜(t3, s3). Thus ˜ is transitive. We show that ˜ is a

congruence. Let (t1, s1)˜(t2, s2), (t, s) ∈ W . Then t1s2 = t2s1. We need to show that

(t1t, s1s)˜(t2t, s2s), or t1t.s2s = s1s.t2t and this is true. Let the class [(a, b)] in W be

denoted by a/b for all (a, b) ∈ W . Thus W/˜ = {a/b : b ∈ T, a ∈ S} is a semigroup.

We define an involution * on W/˜ by (a/b)∗ = a∗/b∗ for all a/b ∈ W/˜. This is well-

defined. For let a/b = c/d. Then ad = bc and so d∗a∗ = c∗b∗. Thus a∗/b∗ = c∗/d∗. Also

(a/b)∗∗ = a/b, (a/b.c/d)∗ = (ac/bd)∗ = (ac)∗/(bd)∗ = (c∗a∗)/(d∗b∗)
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= c∗/d∗.a∗/b∗ = (c/d)∗.(a/b)∗, for all a/b, c/d ∈ W/˜. This involution is proper. For

let (a/b.a/b)∗ = (a/b.c/d)∗ = (c/d.c/d)∗, b, d 6= 0. Then aa∗/bb∗ = ac∗/bd∗ = cc∗/dd ∗ .

Then aa∗bd∗ = bb∗ac∗, ac∗dd∗ = bd∗cc∗, aa∗dd∗ = bb∗cc∗. We need to show that a/b = c/d

or ad = bc. By cancellation aa∗ d∗ = b∗ac∗. If a = 0 then bb∗cc∗ = 0, b 6= 0. Then cc∗ = 0

and so c = 0. It follows that ad = bc as required. On the other hand if a 6= 0 then from

aa∗ d∗ = b∗ac∗ we get a∗ d∗ = b∗c∗ and so da = cb as required. Thus (W/˜, ∗) is a

proper *-semigroup. Now we see that W/˜ is regular. For let a/b ∈ W/˜. If a = 0 then

a/b.a/b.a/b = a/b. On the other hand if a 6= 0 then a/b.b/a.a/b = aba/bab = a/b since

abab = abab. Finally we show that there is a *-embedding f : (S, ∗) → (W/˜, ∗) given

by f(a) = ab/b where b is some fixed non zero element in S. For if f(a) = f(c) then

ab/b = cb/b and so abb = cbb from which we get a = b. Also f(ac) = acb/b = ab/b.cb/b

= f(a)f(c) because acb3 = acb3. And f(a∗) = a∗b/b = a∗b∗/b∗ = (f(a))∗ because

a∗bb∗ = a∗bb∗. This completes the proof. �

3. Two Counter Examples

Example 4. Let S be the multiplicative group generated by the matrix A =

 −1 2i

2i 3

.

We notice that A−1 = At. Now (S, ∗) under the inverse involution (which is the transpose

involution) is a proper *-semigroup: aa−1 = ab−1 = bb−1implies that a = b for all a, b ∈ S.

It is to be noticed that S is an infinite cyclic group. This is a Z−module with involution

defined by (
∑

miA
mj)∗ =

∑
miA

−mj ,mi ∈ Z. This is the same as the semigroup ring

with involution (Z[S], ∗) where ∗ is as defined above. Since Z is a formally complex ring

under the identity involution and since (S, ∗) is an inverse it follows that (Z[S], ∗) is a

proper *-ring. This not regular if we take 2A then there is no element in Z[S] of the

C =
∑

miA
mj such that 2AC.2A = 2A then taking absolute values of determinants of

both sides would give 28k = 24 where k is a positive integer and this is impossible. We

claim that the proper *-ring (Z[S], ∗) cannot be *-embedded in any regular proper *-ring .

For assume that (Z[S], ∗) is *-embedded in a regular proper *-ring (R, ∗). We notice that
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A3 =

 −5 6i

6i 7

 , A4 =

 −7 8i

8i 9

 , B = A3 − A4 =

 2 −2i

−2i −2

. Then in (R, ∗)

we have BB∗ = 0. This implies that A3 = A4 in (R, ∗) although A3 6= A4in (Z[S], ∗) and

this is a contradiction.

Example 5. Consider the set S of matrices of kind

 a b

ka kb

 , a, b, k ∈ Z[x]. We

restrict a to be a polynomial of nonzero constant term and b to be a polynomial without

constant term. Then S is closed under multiplication as can be easily verified. We notice

that the two columns as well as the two rows in any of these matrices are linearly dependent

and that S is closed under the transposition involution. Also we notice that this involution

is proper for there is no nonzero matrix A in S such that AA∗ = AAt = 0. Thus (S, t)

is a proper *-semigroup. Now consider the multiplicative semigroup T = M2(Q(i)(x)) of

all 2 by 2 matrices with entries as rational functions in x and with coefficients from the

field Q[i]. This semigroup (S, t) is a semigroup with the transpose involution t. But this

involution is not proper.

Assume that there is a smallest proper *semigroup (W, t) in (T, t) that contains (S, t).

Consider the matrix A =

 1 + x ix

0 0

 ∈ S. Then there is a matrix B =

 a b

c d

 ∈
W such that ABA = A,BAB = B. Thus

 1 + x ix

0 0

  a b

c d

 1 + x ix

0 0

 = 1 + x ix

0 0

,

 a b

c d

 1 + x ix

0 0

 a b

c d

 =

 a b

c d

. Carrying out the

necessary calculations we find that B =

 a b

c d

 =

 1 i

i −1

 ∈ W . But we notice

that BBt = 0 and so (W, t), although regular and contains (S, t), is not a proper *-

semigroup.

Example 6. In this example we exhibit a p*-semigroup which is not regular and can be

*-embedded in a regular p*-semigroup yet it cannot be *-embedded in any regular p*-ring.

Let R = M2([2Z][i]) be the ring of all 2 × 2 matrices with entries from the ring [2Z][i].



12 ADEL A. ABDELKARIM

Let S be the subsemigroup of R (under multiplication) generated by the elements aeij,

where a = 0, 2 or 2i and eij is the matrix with 0 everywhere except the ij−entry, which

is 1. Let s1 = 2e11 and s2 = 2ie12. Then s1, s2 are in S. Let t be the transpose involution

on S. Then (S, ∗) is a non-regular p*-semigroup. Let T be the set {qeij, q ∈ Q}. Then

(T, t) is a regular p*-semigroup which *–embeds (S, t). We claim that (S, t) cannot be

*-embedded in any p*-ring (regular or not). Otherwise, let f be a *-embedding of (S, t)

into a proper*-ring (W, ∗). Then (R, t) has a ring homomorphic image in (W, ∗), because

the elements of S form a basis for the free Z-module R and W is a Z-module which

contains S. Let us call such a homomorphism by f−. Then f− is [2Z][i]−linear and it

extends f . The involution * on W extends t in the sense that f−(At) = (f−(A))∗. Now

t is not a proper involution on R since if A is the non zero matrix with first row being

(2,−2i), and the second row being the zero row then A = s1− s2 ∈ R and AAt = 0. Thus

f−(AAt) = 0 = f−(A)(f−(A))∗ in W . Since (W, ∗) is a p*-ring it follows that f(A) = 0

in W . Thus 0 = f−(s1) − f−(s2) in W . But then f(s1) = f(s2) in W and this is a

contradiction.
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