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Abstract. Algebraic structures play a prominent role in mathematics with wide ranging applications in

many disciplines such as theoretical physics, computer sciences, control engineering, information sciences,

coding theory, topological spaces and the like. This provides sufficient motivation to researchers to review

various concepts and results. The theory of ternary algebraic system was introduced by D. H. Lehmer

[11]. He investigated certain ternary algebraic systems called triplexes which turn out to be commutative

ternary groups. The notion of ternary semigroups was introduced by Banach S. He showed by an example

that a ternary semigroup does not necessarily reduce to an ordinary semigroups.

In another hand, in mathematics, Green’s relations characterise the elements of a semigroup in terms

of the principal ideals they generate. John Mackintosh Howie, a prominent semigroup theorist, described

this work as so all-pervading that, on encountering a new semigroup, almost the first question one asks

is ”What are the Green relations like?” (Howie 2002). The relations are useful for understanding the

nature of divisibility in a semigroup.

In this paper we study Green’s relations on ternary semigroup in view of those obtained in binary

semigroups. Many interesting results (essentially analogous of Green’s lemmas for semigroups [4] and

[13]) can be derived for our case. We are also interested in the quality of idempotents with respect to the

Green’s relations. The particular case of ternary inverse semigroup has been studied and a relationship

between the existence of idempotents and the inverse elements has been caracterized.
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2. Preliminaries

Definition 0.1. A nonempty set S is called a ternary semigroup if there exists a ternary operation;

. : S×S×S −→ S, written as (a, b, c) 7−→ a.b.c satisfying the following identity for any a, b, c, d, e ∈ S,

(a.b.c).d.e = a.(b.c.d).e = a.b(c.d.e).

Notation 0.2. In the sequel the element a.b.c will be simply denoted abc.

Definition 0.3. An element 1 ∈ S is called a unity if:

∀x, y ∈ S; 1xy = x1y = xy1 and 11x = x.

From now, our ternary semigroups are supposed to have a unity which we always denote by 1.

Definitions 0.4. .

(1) An element a ∈ S is an inverse of an element b ∈ S if aba = a and bab = b.

(2) An element is then said to be regular if it has at least one inverse.

(3) An element b ∈ S is a weak inverse of an element a if aba = a.

Definition 0.5. Let S be a ternary semigroup. An element a of S is said to be von Neumann regular if

it has at least an weak inverse or equivalently; a = axa for some x ∈ S; and S is called a von Neumann

regular semigroup if every element of S is von Neumann regular.

Definition 0.6. Let S be a ternary semigroup. An element a of S is said to be an idempotent if a.a.a = a.

Remark 0.7. It is clear that an idempotent element is invertible and has itself as an inverse.

Definition 0.8. A ternary semigroup S is said to be

(1) commutative if abc = acb = cba = bac ∀a, b, c ∈ S.

(2) cyclicly commutative if abc = bca = cab ∀a, b, c ∈ S.

Remark 0.9. If S is commutative, then S is cyclicly commutative. The converse is false.

Definition 0.10. Let S be a ternary semigroup, the center of S denoted by Z(S) is the set defined by:

Z(S) = {x ∈ S / xyz = yzx) for all y, z ∈ S}.
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3. Main results

1. Green’s relations on S

Let S be a ternary semigroup. By S1 we denote the set S ∪{1} where 1 is the identity for the ternary

operation. We define five equivalence relations on S1 which we call Green’s relations by:

∀a, b ∈ S1; aLSb ⇐⇒ ∃x, y, u, v ∈ S1 such a = x.y.b and b = u.v.a.

∀a, b ∈ S1; aRSb ⇐⇒ ∃x, y, u, v ∈ S1 such a = b.x.y and b = a.u.v.

∀a, b ∈ S1; aISb ⇐⇒ ∃x, y, u, v ∈ S1 such a = x.b.y and b = u.a.v.

∀a, b ∈ S1; aHSb ⇐⇒ aLSb and aRSb.

Now we define the relation DS to be the least equivalence relation containing both LS and RS .

For any a ∈ S1, LS
a , R

S
a , H

S
a , D

S
a and ISa will denote the equivalence classes of a modulo respectively

LS ,RS ,HS ,DS and IS . These relation will be denoted if there is no confusion on the ternary semigroup

by: L,R,H,D and I. The corresponding classes of an element a ∈ S1, will be denoted by La, Ra, Ha, Da

and Ia.

Theorem 1.1. On the ternary semigroup S one has L ◦ R = R ◦ L.

Proof.

Let x (L ◦ R) y then there exists z ∈ S such xLz and zRy. So x = abz, z = cdx, z = yuv and y = zwt

for some a, b, c, d, u, v, w and t in S1.

Set α = (abz)wt, then x = abz = ab(yuv) = ab[(zwt)uv] = [(abz)wt]uv = αuv and then x ≤R α (1).

In the other hand; α = (abz)wt = ab(zwt) = aby and then y = zwt = (cdx)wt = [cd(abz)]wt =

cd[(abz)wt] = cdα and then y ≤L α (2).

By construction α ≤R x and α ≤L y so xRα and αLy and then (x, y) ∈ R ◦ L.

�

Proposition 1.2. For any a ∈ Z(S);

(1) X ∈ Ra =⇒ X ≤L a.

(2) X ≤L a and a = Xuv =⇒ X ∈ Ra.

(3) X ∈ La =⇒ X ≤R a.

(4) X ≤R a and a = uvX =⇒ X ∈ La.

Proof.

The proof is trivial. �

Proposition 1.3. D = R ◦ L is the smallest equivalence relation that contains both R and L.
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Proof.

If xRy we always have yLy so xDy. If xLy we also have xRx, so xDy. Finally; R ⊆ D and L ⊆ D.

∀x ∈ S1;xLx and xRx so D is reflexive.

The symmetry is a consequence of the previous theorem.

Let x, y, z ∈ S1 such xDy and yDz. ∃ a, b ∈ S1 such xLa, aRy, yLb, bRz.

For the transitivity it suffices to remark that

(L ◦ R) ◦ (L ◦ R) = L ◦ (R ◦ L) ◦ R = L ◦ (L ◦ R) ◦ R = (L ◦ L) ◦ (R ◦R) = L ◦ R.

Now suppose that C is an equivalence relation that contains both L and R. If (x, y) ∈ D, then there

exists u ∈ S1 such (x, u) ∈ L and (u, y) ∈ R. In this case one has (x, u) ∈ C and (u, y) ∈ C. So (x, y) ∈ C

and D ⊆ C. �

Proposition 1.4. If a ∈ S is regular then any element of DS
a is regular.

Proof.

Let a such a = aλa and let b ∈ DS
a . Then there is c ∈ S such

b = xyc, c = x′y′b, c = aαβ and a = cα′β′.

So

b = xyc = xy(aαβ) = xy((aλa)αβ) = ((xy(cα′β′))λa)αβ = (((xyc)α′β′)λa)αβ =

((bα′β′)λa)αβ = b((α′β′λ)a)αβ = b(α′β′λ)(aαβ) = b(α′β′λ)c =

b(α′β′λ)(x′y′b) = b((α′β′λ)x′y′)b

and then b is regular. �

If T is a subsemigroup the Green’s relations on T 1 will be denoted by LT ,RT ,HT ,DT and IT .

It is easy to prove that

LT ⊂ LS∩(T×T ),RT ⊂ RS∩(T ×T ),HT ⊂ HS∩(T×T ),DT ⊂ DS∩(T×T ) and IT ⊂ IS∩(T×T ).

But in general the Green’s relations on a subsemigroup need not be the restrictions of Green’s relations

on a semigroup. In this sense we have the following facts:

Proposition 1.5. If aba = a then ab1D1ba.

Proof.

We have a = aba = (aba)11 = (ab1)1a =⇒ a ≤R ab1.

ab1 = a.b1 =⇒ ab1 ≤R a. So ab1Ra. (I)

a = aba = a(ba1)1 = a1(1ba) =⇒ a ≤R 1ba.

1ba = 1b.a so 1ba ≤L a, and then 1baLa. (II)

(I) and (II) imply that ab1Dab1. �
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Theorem 1.6. let a be an element of a ternary semigroup S. One has the following implications:

(1) 1) a is Von Neumann regular ⇐⇒ 2) aba = a for some b ∈ S =⇒ 3) 1ab and 1ba are

idempotents.

(2) 2) aba = a for some b ∈ S =⇒ 5) La contains an idempotent and 4) Ra contains an idempotent.

Proof.

(1) 1) ⇐⇒ 2) is by definition.

2) =⇒ 3) If aba = a for some b ∈ S,then (1ab)(1ab)(1ab) = 1[ab(1ab)](1ab) = 1[(ab1)ab](1ab) =

1[(1ab)ab](1ab) = 1[1(aba)b](1ab) = 1[1ab](1ab) = 11(ab(1ab)) = ab(1ab) = (ab1)ab = (1ab)ab =

1(aba)b = 1ab. 1ab is an idempotent,

If aba = a for some b ∈ S,then (1ba)(1ba)(1ba) = 1[ba(1ba)](1ba) = 1[(ba1)ba](1ba) = 1[(1ba)ba](1ba) =

1[1(bab)a](1ba) = 1[1ba](1ba) = 11(ba(1ba)) = ba(1ba) = (ba1)ba = (1ba)ba = 1(bab)a = 1ba.

1ab is an idempotent,

(2) ab1 ∈ Ra and by the previous proposition ab1 is an idempotent.

(3) 1ba ∈ La and by the previous proposition 1ba is an idempotent.

�

Definition 1.7. Let S be a ternary semigroup. We define on S the following preorder relations:

a ≤L b ⇐⇒ a = xyb for some x, y ∈ S.

a ≤R b ⇐⇒ a = bxy for some x, y ∈ S.

a ≤I b ⇐⇒ a = xby for some x, y ∈ S.

a ≤H b ⇐⇒ a ≤L b and a ≤R b.

Proposition 1.8. Let S be a ternary semigroup.

(1) Let a ∈ S be an idempotent and b be an element of S. Then

b ≤R a ⇐⇒ b = aab.

b ≤L a ⇐⇒ b = baa.

(2) If a ≤R axy, then aRaxy.

(3) If a ≤L xya, then aLxya.

Proof.

(1) b ≤R a =⇒ b = axy for some x, y ∈ S1. It follows that aab = aa(axy) = (aaa)xy = axy = b.

Conversely b = aab ⇐⇒ b ≤R a.

The same proof can be make to obtain the other equivalence.
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(2) In one hand we have a ≤R axy and in the other the expression axy = a.xy =⇒ axy ≤R a. So

aRaxy.

(3) With the same arguments as in 2), the expression xya = xy.a implies xya ≤L a but a ≤L xya

so aLxya.

�

Definition 1.9. Let T be a subset of a ternary semigroup. We say that T is left (resp. right, twosided)

(S, S)-stable or ideal if

∀x, y ∈ S, ∀a ∈ T ; x.y.a ∈ T (resp. a.x.y ∈ T, a ∈ T ; x.y.a ∈ T and a.x.y ∈ T ).

Theorem 1.10. Let T be a Von Neumann regular subset of S.

(1) If T is left (S, S)-stable, then LT = LS ∩ (T × T ).

(2) If T is right (S, S)-stable, then RT = RS ∩ (T × T ).

(3) If T is twosided (S, S)-stable, then HT = HS ∩ (T × T )

Proof.

Let (a, b) ∈ LS ∩ (T × T ) then a, b ∈ T and ∃x, y, u, v ∈ S such a = x.y.b and b = u.u.a. T is Von

Neumann regular so ∃α, β ∈ T such a = a.α.a and b = b.β.b ; By replacing a and b by their values we get

a = x.y.(b.β.b) and b = u.v.(a.α.a). and then a = (x.y.b).β.b and b = (u.v.a).α.a. T is left (S, S)-stable

then c = (x.y.b) ∈ T and d = (u.v.a) ∈ T . Finally there exists c, β, d, α ∈ T such a = c.β.b and b = d.α.a

and this means that (a, b) ∈ LT .

We obtain the second assertion by the using similar arguments. The third assertions is a consequence

of the first and the second assertions. �

Green’s relations on ternary semigroups are stable under morphisms.

Proposition 1.11. Let ϕ : S −→ T be a morphism and R be one of the relations L,R,H,D, I.

If a RSb then ϕ(a) RTϕ(b).

Proposition 1.12. If a, b are two idempotent elements, the following conditions are equivalent:

(1) a ≤H b,

(2) aab = a = baa,

(3) bab = a.

Proof.

(1) (1 =⇒ 2)

a ≤H b ⇐⇒ a ≤R b and a ≤L b ⇐⇒ a = bxy and a = uvb for some x, y, u, v in S. So

bba = bb(bxy) = (bbb)xy = bxy = a and abb = (uvb)bb = uv(bbb) = uvb = a.
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(2) (2 =⇒ 3)

aab = a =⇒ ba(aab) = baa ⇐⇒ b(aaa)b = baa ⇐⇒ bab = baa = a.

If we use the other equality we get the same equality; that is:

baa = a =⇒ (baa)ab = aab ⇐⇒ b(aaa)b = aab ⇐⇒ bab = aab = a.

(3) (2 =⇒ 1)

Trivial.

�

Proposition 1.13. If α is an inverse of a, then

(1) a = (aαa)(αaα)(aαa),

(2) α = (αaα)(aαa)(αaα).

And then (aαa) is an inverse of (αaα).

Proof.

(1) (aαa)(αaα)(aαa) = a(αaα)[(aαa)αa] = aα(aαa) = aαa = a,

(2) (αaα)(aαa)(αaα) = α[(aαa)(αaα)a]α = α(aαa)α = αaα = α,

�

Proposition 1.14. If E(S) denotes the set of all idempotent elements of S the the restriction of the

preorder ≤H to E(S) is an order, called the naturel order on E(S) and denoted ≤.

Proof.

The symmetry results from the previous proposition. �

Definition 1.15. Let S be a ternary semigroup and T be a subsemigroup of S. T is called a G−subsemigroup

if

LT = LS ∩ (T × T ),RT = RS ∩ (T × T ),HT = HS ∩ (T × T ),

DT = DS ∩ (T × T ), IT = IS ∩ (T × T ).

Proposition 1.16 (Grenn’s lemma). Let a, b be two R−equivalent elements of a ternary semigroup S.

If a = buv and b = acd for some u, v, c, d ∈ S1, then the map ϕ : x 7−→ xuv is a bijection from L(b) onto

L(a) and the map ψ : x 7−→ xcd is a bijection from L(a) onto L(b). Further, these bijections are inverse

each other and are such, for α, β ∈ S :

αLβ ⇐⇒ ϕ(α)Lϕ(β) and αLβ ⇐⇒ ψ(α)Lψ(β)

.

Lemma 1.17. The relation L is right S.S−stable and the relation R is left S.S−stable.



8 RABAH KELLIL

Proof.

The proof is trivial. �

Proof. (Grenn’s lemma.)

Let n ∈ L(a). Since L is right S.S−stable then ncd ∈ L(acd). But n = xya so (ncd)uv = [(xya)cd]uv =

[xy(acd)]uv = [xyb]uv = xy(buv) = xya = n. In the other hand if m ∈ L(b) with the same argument we

can prove that (muv)cd = m so the maps x 7−→ xuv and x 7−→ xcd are inverse of each other then they

are bijections between the mentioned sets.

Let αLβ then α = xyβ and β = x′y′α. ϕ(α) = αuv = (xyβ)uv = xy(βuv) = xyϕ(β) and ψ(α) =

αuv = (xyβ)uv = xy(βuv) = xyψ(β); so

αLβ =⇒ ϕ(α)Lϕ(β) and ψ(α)Lψ(β)

. Conversely; suppose that ϕ(α)Lϕ(β), then ψ(ϕ(α))Lψ(ϕ(β)) and so αLβ. For the other implication we

use the same argument. �

The next dual version of the proposition is proved similarly.

Proposition 1.18 (Green’s lemma). Let a, b be two L−equivalent elements of a ternary semigroup S. If

a = uvb and b = cda for some u, v, c, d ∈ S1, then the map ϕ : x 7−→ uvx is a bijection from R(b) onto

R(a) and the map ψ : x 7−→ cdx is a bijection from R(a) onto R(b). Further, these bijections preserve

the R−classes and are inverse each other, that is, for α, β ∈ S :

αRβ ⇐⇒ ϕ(α)Rϕ(β) and αRβ ⇐⇒ ψ(α)Rψ(β).

Proof.

The proof is exactly the same as in proposition 2.8, which we adapt to the right classes. �

Corollary 1.19. If a, b are H−equivalent then, ∀α, β ∈ S :

αHβ ⇐⇒ ϕ(α)Hϕ(β) and αHβ ⇐⇒ ψ(α)Hψ(β).

Proposition 1.20. Let x, y ∈ S. If R(y) ∩ L(x) contains an idempotent e then xey ∈ R(x) ∩ L(y).

Proof.

If e ∈ R(y) ∩ L(x) then eey = y and xee = x (Hint:e ∈ R(y) =⇒ y = eab =⇒ eey = ee(eab) =

(eee)ab = eab = y).

eRy =⇒ xeeRxey and the xRxey.

eLx =⇒ eeyLxey and then yLxey.

Finally xey ∈ L(y) ∩R(x). �

Proposition 1.21. Let e, f ∈ E(S) the set of all idempotents of S. For all

x ∈ R(e) ∩ L(f) there exists y ∈ R(f) ∩ L(e) such xfy = e and yex = f .
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Proof.

If x ∈ R(e)∩L(f) then x = eex and x = xff . There also are u, v, a, b ∈ S1 such e = xuv and f = abx.

Let y = fuv then:

f = abx = ab(eex) = ab((xuv)ex) = ((abx)uv)ex = (fuv)ex = yex.

and

e = xuv = (xff)uv = xf(fuv) = xfy.

In the other hand:

y = fuv and y = yex imply that y ∈ R(f).

e = xfy and y = fuv = (abx)uv = ab(xuv) = abe imply y ∈ L(e), and so y ∈ R(f) ∩ L(e). �

Corollary 1.22. Let e be an idempotent. For all x ∈ H(e) there exists y ∈ H(e) such xey = e = yex.

So xef and yex are in ES.

Proof.

Take e = f in the previous proposition. �

2. Inverse semigroups

Definition 2.1. A ternary semigroup S is called a ternary inverse semigroup, if each element x ∈ S has

a unique inverse element denoted x−1; that is

xx−1x = x and x−1xx−1 = x−1x−1

Proposition 2.2. Let S be a ternary inverse semigroup and e, f, g be in E(S). If x = (efg)−1, then

(xee)(efg)(xee) = xee,

(ggx)(efg)(ggx) = ggx.

And finally; x = xee = ggx

Proof.

efg = (efg)x(efg) = ef [gx(efg)] = ef [(ggg)x(efg)] = (efg)(ggx)(efg)

efg = (efg)x(efg) = ef [(gxe)fg] = ef [(gx(eee))fg] = ef [(g(xee)e)fg] = (efg)(xee)(efg).

But (xee)(efg)(xee) = x((eee)fg)(xee) = x(efg)(xee) = (x(efg)x)ee = xee and

(ggx)(efg)(ggx) = gg[x(efg)(ggx)] = gg[(xef)gx] = gg[x(efg)x] = ggx. So xee and ggx are inverses

of egf and by the unicity of this inverse, we conclude that

(efg)−1 = xee = ggx.

�
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Definition 2.3. A nonempty set G endowed with a ternary operation is a ternary group if:

(1) ∀x, y, z, a, b ∈ G; (xyz)ab = x(yza)b = xy(zab);

(2) there exists an element 1 ∈ S such 11x = 1x1 = x11 = x, ∀x ∈ S;

(3) ∀x ∈ S, ∃!x′ ∈ S such xx′x = x and x′xx′ = x′.

Proposition 2.4. Let S be a ternary inverse semigroup with unity. If E(s) is commutative then E(S)

is a ternary group.

Proof.

If E(S) is commutative then it is stable under the ternary operation, that is if e, f, g are idempotents

then:(efg)(efg)(efg) = (eee)(fff)(ggg) = efg.

1 is an idempotent.

Every idempotent is invertible and its unique inverse is then itself. �
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