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Abstract. For the American put-call option symmetry in the Heston (1993) model, we provide a new and simple

proof that is easily accessible to the general finance readership. We also characterize the link between the free-

boundary of the American call and the free boundary of the symmetric American put.
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1. Introduction

Several authors have studied American options within the Heston (1993) model (e.g. Broadie

and Kaya (2006), Andersen (2008), and Vellekoop and Nieuwenhuis (2009)). We contribute by

providing a proof of the pricing parity between the American call and its symmetric American

put in the Heston (1993) model that is easily accessible to a general finance audience. In the

European case, the put-call parity relates the prices of European call and put options on the

same underlying asset, with the same maturity and the same strike via the law of one price.
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In the American case the put-call parity fails, but it is possible to derive a put-call symmetry

relation. Such a relation is important for pricing purposes given the size of American derivatives

markets. Moreover such a relation is useful for the analysis of optimal decision making for

real option holders (see for instance Battauz et alii (2012) and (2014)). The American put-

call symmetry relation equates the price of an American call to the price of an American put by

swapping the initial underlying price with the strike price and the dividend yield with the interest

rate. American put-call symmetry results1 have been obtained by Carr and Chesney (1996)

and McDonald and Schroder (1998) in the absence of stochastic volatility, and by Fajardo and

Mordecki (2008) in a Levy process framework. We provide a change-of-numeraire-based proof

of the American put-call symmetry in the Heston (1993) stochastic volatility model (see Geman

et alii (1995) for a discussion on the change of numeraire technique and Battauz (2002) for

applications to American options). We also characterize the link between the free-boundary of

the American call and that of the symmetric American put. Meyer (2013) offers an alternative

proof based on partial differential equations.

2. The American put-call symmetry in the Heston (1993) model

In the Heston (1993) model the stock price S is described by the following stochastic differ-

ential equation with respect to the risk-neutral measure Q

dS (s)
S (s)

= (r−q)ds+
√

v(s)dW1 (s) , S (0) = S0 for any s≥ 0(1)

dv(s) = k (v− v(s))ds+ξ
√

v(s)
(

ρdW1 (s)+
√

1−ρ2dW2 (s)
)

v(0) = v0,(2)

where W1 and W2 are two independent standard Brownian motions under the risk neutral mea-

sure Q and the filtration F ; r is the riskless interest rate; q is the dividend yield of the stock;√
v(s) is the stochastic volatility of S at time s; v is the long variance; k is the speed of mean

reversion of v towards v; ξ is the vol of vol; ρ is the correlation between S and v. We assume

that 2kv > ξ 2, to ensure that the volatility is always positive.

We denote by B(t) = ert the riskless bond at date t.

1For a general treatment of the European put-call symmetry see Carr and Lee (2009).
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Consider now an American call option on S. Its no-arbitrage price is

(3) c(t) = ess sup
t≤τ≤T

E
[

e−r(τ−t) (S(τ)−K)+
∣∣∣Ft

]
for any t ∈ [0,T ] , where E [·] denotes the (conditional) risk neutral expectation, and τ denotes

a stopping time with respect to the filtration F . It can be shown that c(t) is a deterministic

function of t, S (t) and current levels of volatility
√

v(t). With a small abuse of notations we

write

c(t) = c(t,S (t) ,v(t)) .

The function c depends on the values of the fundamental parameters. We denote such depen-

dence by writing

c(t) = c(t,S (t) ,v(t) ;r,q,v,k,ξ ,ρ,K) .

The no-arbitrage price of the American put option on S is

(4) p(t) = ess sup
t≤τ≤T

E
[

e−r(τ−t) (K−S(τ))+
∣∣∣Ft

]
for any t ∈ [0,T ] . It can be shown that p(t) is a deterministic function of t, S (t) and current

levels of volatility
√

v(t). With a small abuse of notations we write

p(t) = p(t,S (t) ,v(t)) = p(t,S (t) ,v(t) ;r,q,v,k,ξ ,ρ,K) .

As we already anticipated, in the American case it is possible to write c(t) in terms of a sym-

metric American put option, whose definition in the stochastic volatility setting is provided here

follows:

Definition 2.1. (The symmetric put option) The symmetric American put option associated

to the American call option (3) is the American put option on a Heston (1993) underlying Sput

driven by the following equations for s≥ t

dSput (s)
Sput (s)

= µputds+
√

vput (s)dW1 (s) ,(5)

dvput (s) = kput (vput− vput (s))ds+ξput

√
vput (s)

(
ρputdW1 (s)+

√
1−ρ2

putdW2 (s)
)
,(6)

where the values for the fundamental parameters are: Sput (t) = K, µput = q− r, vput (t) = v(t) ,

vput =
kv

k−ξ ρ
, kput = (k−ξ ρ) , ξput = ξ , ρput =−ρ, rput = q, and Kput = S (t) .



4 ANNA BATTAUZ, MARZIA DE DONNO, ALESSANDRO SBUELZ

In the next theorem, we provide the fundamental symmetry result that relates the time−t price

of the American call option c(t) to the time−t price of the symmetric American put option.

Theorem 2.2. (American put-call symmetry) Consider the American call option defined in (3)

whose value at time t ∈ [0;T ] is denoted with c(t) = c(t,S (t) ,v(t) ;r,q,v,k,ξ ,ρ,K).

Consider the symmetric American put option defined in Definition 2.1, whose value at time

t ∈ [0;T ] is denoted with

p(t) = p(t,Sput (t) ,vput (t) ;rput ,qput ,vput ,kput ,ξput ,ρput ,Kput) .

The value of the American call coincides with the value of the symmetric American put as

defined in Definition 2.1. More precisely, for any 0≤ t ≤ T we have

(7)

c(t,S (t) ,v(t) ;r,q,v,k,ξ ,ρ,K) = p(t,Sput (t) ,vput (t) ;rput ,qput ,vput ,kput ,ξput ,ρput ,Kput) .

Moreover, given x = S (t) , K and v = v(t) , for any x̂put , K̂put such that x
K =

K̂put
x̂put

we have that

(8) c(t,x,v;r,q,v,k,ξ ,ρ,K) =
√

xK
p
(

t, x̂put ,vput ;rput ,qput ,vput ,kput ,ξput ,ρput , K̂put

)
√

x̂putK̂put

,

where x̂put replaces Sput (t) and K̂put replaces Kput in Definition 2.1.

Proof. Define the numeraire (see Battauz (2002)) N (t)= S (t)e−(r−q)t , which is a Q−martingale,

since dN(t)
N(t) =

√
v(t)dW1 (t) . The numeraire N is associated to the equivalent martingale mea-

sure QN whose density with respect to Q is L(T ) = dQN

dQ = N(T )
N(0) . Girsanov theorem ensures

that

(9) dW N
1 (t) =−

√
v(t) dt + dW1 (t) , dW N

2 (t) = dW2 (t)

are the differentials of two standard independent QN Brownian motions.

We apply the change of numeraire to c(t) in (3).

To evaluate the American call option at any t, we consider a generic stopping time t ≤ τ ≤ T

and compute

E
[

e−r(τ−t) (S(τ)−K)+
∣∣∣Ft

]
=

EQN
[

1
L(T )e−r(τ−t)(S(τ)−K)+

∣∣∣Ft

]
EQN [ 1

L(T )

∣∣∣Ft

]
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=
EQN

[
EQN

[
1

L(T )e−r(τ−t)(S(τ)−K)+
∣∣∣Fτ

]∣∣∣Ft

]
EQN [ 1

L(T )

∣∣∣Ft

] , where the first equation follows from Bayes theorem,

and the second from the law of iterated conditional expectation. Since e−r(τ−t) (S(τ)−K)+ is

Fτ−measurable and 1
L(t) is a QN−martingale we get

E
[

e−r(τ−t) (S(τ)−K)+
∣∣∣Ft

]
=

EQN
[
e−r(τ−t)(S(τ)−K)+ 1

L(τ)

∣∣∣Ft

]
1

L(t)

= L(t)EQN
[
e−r(τ−t) (S(τ)−K)+ 1

L(τ)

∣∣∣Ft

]
.

Recalling the definition of L we obtain

E
[

e−r(τ−t) (S(τ)−K)+
∣∣∣Ft

]
= S(t)e−(r−q)t

S(0) EQN
[
e−r(τ−t) (S(τ)−K)+ · S(0)

S(τ)e−(r−q)τ

∣∣∣Ft

]
= S(t)

S(0)E
QN
[

e−q(τ−t)
(

S (0)− S(0)K
S(τ)

)+∣∣∣∣Ft

]
= EQN

[
e−q(τ−t)

(
S (t)− S(t)K

S(τ)

)+∣∣∣∣Ft

]
.

Passing to the essential supremum over all stopping times t ≤ τ ≤ T we get that

(10) c(t) = ess sup
t≤τ≤T

EQN

[
e−q(τ−t)

(
S (t)− S (t)K

S (τ)

)+
∣∣∣∣∣Ft

]
.

The argument of the Ft−expectation under QN in Equation (10) is the payoff at τ ≥ t of

an American put option with maturity T, interest rate rput = q, strike Kput = S (t) = x on

the asset Sput (s) = xK
S(s) . Applying Ito formula we derive the stochastic differential of Sput

for any s ≥ t : dSput (s) = xK · d
(

1
S(s)

)
= xK

S(s) ·
(
−(r−q)ds−

√
v(s)dW1 (s)+ v(s)ds

)
=

Sput (s) ·
(
−(r−q)ds−

√
v(s)dW1 (s)+ v(s)ds

)
. From Equation (9) we substitute dW1 (s) =√

v(s) ds + dW N
1 (s) and get dSput(s)

Sput(s)
=−(r−q)ds−

√
v(s)·

(√
v(s) ds + dW N

1 (s)
)
+v(s)ds

= (q− r)ds−
√

v(s)dW N
1 (s) . Therefore the underlying of the American put option is driven

under the evaluation measure QN by the “Heston (1993) dynamics” of type (1)

dSput (s)
Sput (s)

= (q− r)ds−
√

v(s)dW N
1 (s) ,

with rput = q and qput = r. We verify now that the volatility term follows a dynamics of the

same type of Equation (2) . By Girsanov theorem (9) , v(s) is driven by

dv(s)= k (v− v(s))ds+ ξ
√

v(s)(ρdW1 (s) +
√

1−ρ2dW2 (s)
)
= (k−ξ ρ)

(
kv

k−ξ ρ
− v(s)

)
ds

+ξ
√

v(s)
(

ρdW N
1 (s)+

√
1−ρ2dW N

2 (s)
)
. Since dŴ N

1 (s)=−dW N
1 (s) defines a standard QN−
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Brownian motion that is QN−independent of W N
2 we have that

dSput (s)
Sput (s)

= (q− r)ds+
√

v(s)dŴ N
1 (s) and

dv(s) = (k−ξ ρ)

(
kv

k−ξ ρ
− v(s)

)
ds+ξ

√
v(s)

(
(−ρ)dŴ N

1 (s)+
√

1−ρ2dW N
2 (s)

)
.

Therefore under QN the underlying of the put option Sput follows an Heston (1993) dynamics

with Sput (t) = K, vput =
kv

k−ξ ρ
, kput = (k−ξ ρ) , ξput = ξ , and ρput =−ρ, as in Definition 2.1.

We conclude that Equation (10) can be rewritten as

c(t) = esssupt≤τ≤T EQN
[

e−q(τ−t) (Kput−Sput (τ))
+
∣∣∣Ft

]
= p(t,Sput (t) ,vput (t) ; rput ,qput ,vput ,kput ,ξput ,ρput ,Kput), which is (4) .

To prove (8) , take a β > 0 such that K̂put =
x
β
, is an unconstrained strike for the put option,

and let x̂put =
Sput(t)

β
= K

β
. The remaining parameters for the symmetric put are

rput ,qput ,vput ,kput ,ξput ,ρput ,Kput as before: for simplicity we omit them. By formula (7)

c(t,x, ...,K) = p(t,K, ...,x) = β p
(

t, K
β
, ..., x

β

)
= β · p

(
t, x̂put , ..., K̂put

)
, where the second e-

quality follows from the homogeneity property of the put option. Since β = x
K̂put

= K
x̂put

, writing

β =
√

β ·β =
√

x
K̂put
· K

x̂put
, we arrive at (8).

In the constant volatility framework, the optimal exercise policy for an American call option

is the first time the underlying asset exceeds the critical price. The critical price is time-varying,

and its graph in the plane (t,S) separating the continuation region from the immediate exercise

region is called the free boundary. In the Heston (1993) model, the free boundary is a surface in

the space (t,S,v). The free boundary of the American call option is linked to the free boundary

of the symmetric American put option via the following theorem.

Theorem 2.3. (The free boundary) Consider the American call option defined in (3) whose

value at time t ∈ [0;T ] is denoted with c(t) = c(t,S (t) ,v(t) ;r,q,v,k,ξ ,ρ,K) = c(t,x,v; ...,K).

The free boundary for the American call option at t and v = v(t) is

f b(t,v) = inf
{

x≥ 0 : c(t,x,v; ...,K) = (x−K)+
}
.

Let K̂put = 1 and consider the symmetric American put option where x̂put replaces Sput (t)

and K̂put = 1 replaces Kput in Definition 2.1 as for (8). The free boundary of the symmetric

American put option vput (t, x̂put ,vput ;rput ,qput ,vput ,kput ,ξput ,ρput ,1) = vput (t, x̂put ,vput ; ...,1)
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is

f bput(t,vput) = sup
{

x̂put ≥ 0 : vput (t, x̂put ,vput ; ...,1) = (1− x̂put)
+} .

Then

f b(t,v) = K · f bput(t,vput).

Proof. The parameters x,K , and x̂put are constrained by the equality x
K = 1

x̂put
. It follows that

f b(t,v) = inf

{
K

x̂put
≥ 0 :

√
xK

p(t,x̂put ,vput ;...,1)√
x̂put K̂put

=
(

K
x̂put
−K

)+}
= K sup

{
x̂put ≥ 0 :

√
xK

vput(t,x̂putvput ;...,1)√
x̂put

= K
x̂put

(1− x̂put)
+

}
= K sup

{
x̂put ≥ 0 :

√
K

x̂put
K

vput(t,x̂put ,vput ;...,1)√
x̂put

= K
x̂put

(1− x̂put)
+

}
, since x = K

x̂put
. Therefore

f b(t,v)=K ·sup
{

x̂put ≥ 0 : vput (t, x̂put ,vput ; ...,1) = (1− x̂put)
+}= K · f bput (t, x̂put ,vput ; ...,1) .

3. Conclusions

We employ a change-of-numeraire technique to provide a new and easy proof of the pricing

parity between the American call and its symmetric American put in the Heston (1993) stochas-

tic volatility model. We work out in detail the link between the free boundaries of the symmetric

American options.
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