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Abstract. Analytical pricing formulas and Greeks are obtained for European and American basket put options

using Mellin transforms. We assume assets are driven by geometric Brownian motion which exhibit correlation

and pay a continuous dividend rate.
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1. INTRODUCTION

An option is a financial contract that presents its holder with the right, but not the obligation,

to buy (call) or sell (put) a given amount of asset at some future date. In practice, the under-

lying asset is often the price of a stock, commodity, foreign exchange rate, financial index or

futures contract. While many styles of options exist, here we are concerned with the valuation

of European and American varieties. American options may be exercised at any time t < T ,

while European options can only be exercised at time T . In both cases, their definitions can be

extended to basket options, which differ by their dependence on n ∈ N underlying assets.
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Since the seminal paper of [1], much of the literature assumes assets are driven by geometric

Brownian motion (GBM). Under this assumption, European option valuation relies on solv-

ing the Black-Scholes partial differential equation (PDE). With American options, the early-

exercise condition gives rise to a free boundary, in which no closed-form solution exists. The

corresponding PDE is given by the inhomogeneous Black-Scholes equation. However, using

the Mellin transform to solve the PDE has only recently been considered. Using the Mellin

transform to solve the PDE is distinguishable from convential methods in that; one, the tech-

nique requires no change of variables or reduction to a diffusion equation; and two, it enables

option formulas to be expressed in terms of market asset prices, rather than logarithmic asset

prices. For pricing financial derivatives, the Mellin technique was first introduced in [2], where

the authors consider the European call option without dividends. Thereafter, the dividend-

paying single-asset case is solved in [5] by applying the Mellin transform to the PDE, [4] via

the discounted expectation formula for options, and [3, 10] by an application of Mellin convo-

lution. For American options, the dividend-paying single-asset case is solved additionally in

[5]. Mellin transforms have been used to price other styles of options, including perpetuals in

[9]. The general multi-asset formulas for pricing European and American basket options on

dividend-paying assets are derived herein.

In section 2, we extend the existing Mellin-type pricing formulas for European basket options

on n assets with continuous dividend rates and correlation. The expressions for the analogous

American basket option are derived in section 3. As a corollary, new expressions for the Greeks

of multi-asset European and American options are provided in section 4.

2. EUROPEAN OPTIONS

In this section, Mellin transforms are used to derive the formula for the price of a European

basket put option where assets have a continuous dividend rate and correlation. For an option

issued on n assets, let SSS = (S1, ...,Sn)
′, σσσ = (σ1, ...,σn)

′ and qqq = (q1, ...,qn)
′. The value V =

V (SSS, t;K;T ;σσσ ;r;qqq) is dependent on the underlying asset prices 0≤ Si(t)< ∞, the exercise price

K > 0, the maturity time 0 ≤ t ≤ T , the asset volatilities (or standard deviations) σi ≥ 0, the

risk-free interest rate r ≥ 0, and continuous dividend rates qi ≥ 0, ∀i. The assets are assumed to
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be driven by geometric Brownian motion,

dSi = µiSidt +σiSidWi,(2.1)

where the Wiener processes satisfy dWi ∼ Normal(0,dt) and corr(dWi,dWj) = ρi j for ρi j ∈

[−1,1]. The risk-neutral drift

µi = r−qi−
σ2

i
2

(2.2)

ensures the no-arbitrage condition holds. For multivariate Brownian motion with drift, say XXX t ,

the characteristic function Φ(uuu; t) := exp[−tΨ(uuu)] = E[exp(iuuu′XXX t)] is given by the exponent

Ψ(uuu) =
1
2

uuu′Σuuu− iµµµ ′uuu.(2.3)

It is known under these conditions that the corresponding PDE for the price of a European

basket option is the generalized Black-Scholes equation:

∂V
∂ t

+
1
2

n

∑
i, j=1

ρi jσiσ jSiS j
∂ 2V

∂Si∂S j
+

n

∑
i=1

(r−qi)Si
∂V
∂Si
− rV = 0.(2.4)

We note (2.4) must satisfy the boundary conditions

V (SSS,T ) = θ(SSS) =
(
K−

n

∑
i=1

Si
)+ and V (SSS, t)→ 0 as SSS→ ∞.(2.5)

Let M { f (xxx);www} denote the multidimensional Mellin transform of a function f (xxx) ∈Rn+ given

by,

f̂ (www) := M { f (xxx);www}=
∫
Rn+

f (xxx)xxxwww−1dxxx(2.6)

where complex variable www = (w1, ...,wn)
′ exists in an appropriate domain of convergence in Cn.

Conversely, the inverse multidimensional Mellin transform of a function f̂ (www) ∈ Cn is defined

by

f (xxx) = M−1{ f̂ (www);xxx}= (2πi)−n
∫

γ

f̂ (www)xxx−wwwdwww,(2.7)

where γ =
n
×
j=1

γ j are strips in Cn defined by γ j = {a j + ib j : a j ∈R,b j =±∞} with a j ∈ℜ(w j).

Thus, to find the multidimensional Mellin transform of the generalized Black-Scholes equation
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apply (2.6) to (2.4):

∂V̂
∂ t

+
1
2

n

∑
i, j=1

ρi jσiσ jwiw jV̂ +
1
2

n

∑
i=1

σ
2
i wiV̂ +(r−qi)

n

∑
i=1

wiV̂ − rV̂ = 0.(2.8)

By use of (2.2) and (2.3) we may rearrange the expression to obtain the ordinary differential

equation

dV̂ (www, t)
dt

= (Ψ(wwwi)+ r)V̂ (www, t).(2.9)

Solving via the final time condition (2.5) yields

V̂ (www, t) = θ̂(www)e−(Ψ(wwwi)+r)(T−t).(2.10)

Hence, by Mellin inversion we obtain our result.

Theorem 1. The Mellin-type formula for a European basket put option on n assets is given by

V P
E (SSS, t) = M−1{

θ̂(www)Φ(wwwi,T − t)
}

e−r(T−t),(2.11)

where Φ(∗) is the characteristic function of a multivariate Brownian motion with drift and the

Mellin transform of the payoff function is given by

θ̂(www) =
βn(www)K1+∑www

(∑www)(∑www+1)
(2.12)

for multinomial beta function βn(www) = ∏
n
j=1 Γ(w j)/Γ(∑n

i=1 wi), www ∈ Cn, and ℜ(www)> 0.

The derivation of (2.12) proceeds as follows. Consider the following expression for the J-

dimensional Mellin transform of the put payoff function on J assets:∫
RJ+

(K−
J

∑
j=1

Si)
+

J

∏
j=1

Sw j−1
j dS j =

∏
J
j=1 Γ(w j)

Γ(2+∑
J
j=1 w j)

K1+∑
J
j=1 w j .(2.13)

When J = 1 the expression holds. Assume J = n, then for J = n+1

LHS =
∫
R(n+1)+

(K−
n+1

∑
j=1

Si)
+

n+1

∏
j=1

Sw j−1
j dS j

=
∏

n
j=1 Γ(w j)

Γ(2+∑
n
j=1 w j)

∫ K

0
(K−Sn+1)

1+∑
n
j=1 w jSwn+1−1

n+1 dSn+1

=
∏

n+1
j=1 Γ(w j)

Γ(2+∑
n+1
j=1 w j)

K1+∑
n+1
j=1
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from Fubini’s theorem and (3.191.1) in [6]. The result follows from the definition of the multi-

nomial beta function and properties of gamma functions.

Remark 1. An application of generalized put-call parity computes the price of a European call

from a put (see [7]).

3. AMERICAN OPTIONS

In this section, Mellin transforms are used to derive the formula for the price of an American

basket put option where assets have a continuous dividend rate and correlation. For multi-

ple assets, the continuation region exists for ∑
n
i=1 Si > S∗, while the exercise region exists for

∑
n
i=1 Si < S∗. The value V = V (S, t;K;T ;σ ;r;q) of an American option on one asset is known

to satisfy the inhomogeneous generalized Black-Scholes equation:

∂V
∂ t

+
1
2

n

∑
i, j=1

ρi jσiσ jSiS j
∂ 2V

∂Si∂S j
+

n

∑
i=1

(r−qi)Si
∂V
∂Si
− rV = f ,(3.1)

where the early exercise function is

f (SSS, t) =


−rK +∑

n
i=1 qiSi, 0 < ∑

n
i=1 Si ≤ S∗(t),

0, S∗(t)< ∑
n
i=1 Si < ∞.

(3.2)

Similar to the European case, the boundary conditions imposed on (3.1) are

V (SSS,T ) = θ(SSS) =
(
K−

n

∑
i=1

Si
)+ and V (SSS, t)→ 0 as SSS→ ∞.(3.3)

The smooth pasting conditions along the boundary are

∂V (SSS, t)
∂Si

∣∣∣∣
∑

n
i=1 Si=S∗

=−1 and θ(SSS) = K−S∗.(3.4)

The multidimensional Mellin transform of (3.1) is given by the expression

∂V̂
∂ t

+
1
2

n

∑
i, j=1

ρi jσiσ jwiw jV̂ +
1
2

n

∑
i=1

σ
2
i wiV̂ +(r−qi)

n

∑
i=1

wiV̂ − rV̂ = f̂ .(3.5)

By use of (2.2) and (2.3) we may rearrange (3.5) to obtain the ordinary differential equation

dV̂ (www, t)
dt

− (Ψ(wwwi)+ r)V̂ (www, t) = f̂ (www, t).(3.6)
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Solving via the final time condition (3.4) and applying Duhamel’s principle yields

V̂ (www, t) = θ̂(www)e−(Ψ(wwwi)+r)(T−t)−
T∫

t

f̂ (www,s)e−(Ψ(wwwi)+r)(s−t)ds.(3.7)

Hence, by Mellin inversion we obtain our result.

Theorem 2. The Mellin-type formula for an American basket put option on n assets is given by

V P
A (SSS, t) = e−r(T−t)M−1

{
θ̂(www)Φ(wwwi,T − t)

}
−M−1

{∫ T

t
f̂ (www,s)Φ(wwwi,s− t)e−r(s−t)ds

}
,

(3.8)

where Φ(∗) is the characteristic function of a multivariate Brownian motion with drift, θ̂(∗)

is the Mellin transform of the payoff function given by (2.12), and the Mellin transform of the

early exercise function is given by

f̂ (www, t) =
βn(www)(S∗)∑www

∑www

[
qqq′wwwS∗

∑www+1
− rK

]
(3.9)

for free boundary S∗(t), multinomial beta function βn(www) = ∏
n
j=1 Γ(w j)/Γ(∑n

i=1 wi), www ∈ Cn,

and ℜ(www)> 0.

The derivation for (3.9) proceeds as follows. Consider the following expression for the J-

dimensional Mellin transform of the early exercise function on J assets:

∫
RJ+

(
− rK +

J

∑
i=1

qiSi

) J

∏
j=1

Sw j−1
j dS j =

∏
J
j=1 Γ(w j)(S∗)∑

J
j=1 w j

Γ(1+∑
J
j=1 w j)

[S∗∑
J
j=1 q jw j

∑
J
j=1 w j +1

− rK
]
.

When J = 1 the expression holds. Assume J = n, then for J = n+1

LHS =
∫
R(n+1)+

(
− rK +

n+1

∑
i=1

qiSi

)n+1

∏
j=1

Sw j−1
j dS j

=
−rK ∏

n
j=1 Γ(w j)

Γ(1+∑
n
j=1 w j)

∫ S∗

0
(S∗−Sn+1)

∑
n
j=1 w jSwn+1−1

n+1 dSn+1

+
∑

n+1
j=1 q jw j ∏

n
j=1 Γ(w j)

Γ(2+∑
n
j=1 w j)

∫ S∗

0
(S∗−Sn+1)

1+∑
n
j=1 w jSwn+1−1

n+1 dSn+1

=
−rK ∏

n+1
j=1 Γ(w j)

Γ(1+∑
n+1
j=1 w j)

(S∗)∑
n+1
j=1 +

∑
n+1
j=1 q jw j ∏

n+1
j=1 Γ(w j)

Γ(2+∑
n+1
j=1 w j)

(S∗)1+∑
n+1
j=1

from Fubini’s theorem and equation (3.191.1) in [6]. The result follows from the definition of

the multinomial beta function and properties of gamma functions.
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Remark 2. An application of generalized put-call symmetry gives the price of an American call

option from a put (see [8]).

Note that the early exercise premium only contributes to the price of the option when ∑
n
i=1 Si(s)≤

S∗(s). Otherwise the second term of (3.8) is zero. By imposing the smooth pasting conditions

(3.4) on (3.8), we obtain an implicit equation describing the free boundary.

Corollary 1. The free boundary S∗(t) is given by the solution of the expression

K−S∗(t) =
e−r(T−t)

2πi

∫
γ

θ̂(www)Φ(wwwi,T − t)SSS∗(t)−wwwdwww(3.10)

−
∫

γ

∫ T

t
f̂ (www,s)Φ(wwwi,s− t)e−r(s−t)SSS∗(t)−wwwdsdwww.

The free boundary can be obtained by solving for S∗(t) where SSS∗(t) = (S∗1, ...S
∗
n) over the space

of possible prices in Rn+ such that S∗ = ∑
n
i=1 S∗i . By setting the free boundary equal to zero,

(3.8) reduces to (2.11).

4. OPTION SENSITIVITIES

Option sensitivities or Greeks describe the relationship between the value of an option and

changes in one of its underlying parameters. They play a vital role for risk management and

portfolio optimization, since they have the ability to describe how vulnerable an option is to

a particular risk factor. They are easily obtained for European and American options by pass-

ing the appropriate derivative operator under the complex integral in (3.8). For succinctness,

the variable change τ = T − t is used in some of the following expressions. The first partial

derivative with respect to a given asset, Delta, is given by

∆1 :=
∂V
∂Si

=− e−rτM−1
{wi

Si
θ̂(www)Φ(wwwi,τ)

}
(4.1)

+M−1
{wi

Si

∫
τ

0
f̂ (www,τ− s)Φ(wwwi,s)e−rsds

}
.

Theta, the first partial derivative with respect to time is

Θ :=−∂V
∂ t

=− e−r(T−t)M−1
{
(Ψ(wwwi)+ r)θ̂(www)Φ(wwwi,T − t)

}
(4.2)

+M−1
{∫ T

t
(Ψ(wwwi)+ r−1) f̂ (www,s)Φ(wwwi,s− t)e−r(s−t)ds

}
.
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Rho, the first partial derivative with respect to the risk-free rate of return is given by

ρ :=
∂V
∂ r

=− τe−rτM−1
{
(

n

∑
j=1

wi−1)(T − t)θ̂(www)Φ(wwwi,τ)
}

(4.3)

−M−1
{∫ T

t
(

n

∑
j=1

wi−1)(s− t) f̂ (www,s)Φ(wwwi,s− t)e−r(s−t)ds
}
.

By eliminating the second term for each Greek we obtain the corresponding European option

sensitivities. Since most payoff functions are independent of the derivative operator, these ex-

pressions also hold for many path-independent multi-asset options. The American case differs

because the exercise region varies with time and depends on the payoff function. Even in

the simplest case of the basket option, the Mellin transform of the early exercise function is

dependent on the derivative operator and must be considered to obtain expressions for other

multi-asset Greeks.

Remark 3. By direct substitution of the Greeks, we may prove that (i) formula (2.11) is a clas-

sical solution to the European pricing problem (2.4)-(2.5) and (ii) formula (3.8) is a classical

solution to the American pricing problem (3.1)-(3.4).

5. CONCLUSION

In the context of Mellin transforms, we obtain analytic solutions for the fair value of basket

put options and Greeks on n assets with continuous dividend rates and correlation. Solutions

are obtained for both European and American option styles. The decomposition of the solution

enables the direct computation of either European or American basket option prices. By solving

for the Mellin transform of alternate payoff functions, the results presented here may be used to

price more complicated multi-asset options.
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