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Abstract: An elementary linear functional analytic proof of the fundamental theorem of asset pricing for the 
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largely inspired from Pliska. It is based on a special case of the separating hyper-plane theorem. This equivalent 
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1. Introduction 

One of the most important accomplishments of the 20th century is the development of modern 

mathematical finance, which is of tremendous significance for both theory and applications. 

Besides the early formulation of portfolio theory through Markowitz [22], [23], and the formula 
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by Black and Scholes [2] for the valuation of options, the third foundation pillar is the 

fundamental theorem of asset pricing, which goes back to pioneer works by Harrison and Kreps 

[14], and Harrison and Pliska [15].  

Starting point is the notion of arbitrage, which represents a risk-free possibility to acquire 

money. From the economic viewpoint no arbitrage strategies should exist in financial markets. 

According to the fundamental theorem of asset pricing, this is the case if there is a risk-neutral 

probability measure on the state space of possible events.  

Although all mathematical finance textbooks contain a treatment of this primordial result 

(e.g. Duffie [9], Pliska [24], Karatzas und Shreve [18], Shiryaev [27], Elliot and Kopp [10], and 

Föllmer and Schied [11]), all derivations, up to Pliska [24], rely on prerequisites, which go far 

beyond the prevalent mathematical curriculum vitae. Therefore, it is first priority to offer a larger 

audience of interested readers an elementary approach to this fundamental theorem.  

Our introductory presentation is inspired from [24] and is based on a special case of the 

classical Hahn-Banach separation theorem, or equivalently the separating hyper-plane theorem in 

the Euclidean space. Section 2 derives this result with elementary means from linear algebra, 

vector geometry and convex analysis. Section 3 introduces the essential one-period model of the 

financial market with a finite state space and the notion of arbitrage strategy. Finally, the 

fundamental theorem of asset pricing for the one-period model is formulated and proved in 

Section 4. 

 

2. The Hahn-Banach separation theorem for a linear subspace 

Separation theorems for convex sets, as first derived by Hahn [13] and Banach [1], are 

significant mathematical resources (see e.g. van Tiel [28], Klee [19] and their references). They 

find an enormous and widespread application in economics and finance mathematics, from the 

theory of games (e.g. Blackwell and Girshick [3], Chapter 2, Kuhn [20], Chapter 2) to the 

fundamental theorem of mathematical finance (e.g. Pliska [24], Chapters 1 and 3, Föllmer and 

Schied [11], Theorems 1.6 and 5.17). 
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The separating hyper-plane theorem is to such an extent important that besides abstract 

proofs (e.g. Gale [12], p.44) and geometric derivations (e.g. Debreu [6]) even an economics 

proof by Weitzmann [29] has been proposed. The formulation of separation theorems in the 

language of linear algebra, geometry and convex analysis requires the following mathematical 

prerequisites. 

     A subset  nRC    is called convex if given two points  ,, Cyx    the connecting line 

between these two points also belongs to the subset, i.e.  Cyx  )1(    for all   1,0 . 

The subset  nRC    is called compact if it is closed (it contains all its limit points) and bounded 

(all its points lie within some fixed distance from each other). A subset  nRL    is a linear 

subspace if it is a real vector space. A map  RRf n :   is a linear map if it satisfies the 

condition  )()()( yfxfyxf     for all  nRyx , , R, . The symbol     denotes 

the scalar product in Rn , also called dot product or inner product. For two vectors ),...,( 1 nxxx  , 

n

n Ryyy  ),...,( 1 , it is defined by 


n

i
ii yxyx

1

 . A hyper-plane  nRH    through a point  

nRa   is the translation of a linear subspace in  Rn , which does not go through the origin, and 

has the set representation  }0{},{  RddaxRxH n  . A hyper-plane divides the 

Euclidean space in two subspaces  
nRHH  , , which are defined by }{ daxRxH n   , 

}{ daxRxH n   . The hyper-plane  nRH    is said to separate two subsets  

nRBA ,   if the latter lie in two different half-spaces, i.e.    HBHA ,   or  

  HBHA , . The hyper-plane strictly separates the subsets if it separates them with an 

empty intersection, i.e.   BHAH , .  

We are ready for the formulation of the Hahn-Banach separation theorem. 
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Theorem 2.1.  Let  nRC    be a compact convex set with  C0 , and let  nRK    be a 

closed convex set. If  KC , then there exists a non-zero linear map  RRf n :   that 

satisfies  )(inf)(sup yfxf
CyKx 

 . 

 

An equivalent geometric formulation is obtained by means of the famous theorem of 

Riesz-Fisher for the n -dimensional Euclidean space. 

 

Theorem 2.2.  Let  nRL    a linear subspace and  RRf n :   a linear map. Then there 

exists a uniquely determined point  nRa   such that  axxf )(   for all  Lx . 

 

Proof.  One shows first the existence of  nRa . If  f x( )  0   one puts  a  0 . Suppose now 

that  f x( )  0 . The image of the linear map defined by  }),({Im nRxxfyRyf    

has dimension one, i.e.   1Imdim f . Denote the kernel of the linear map by  

}0)({  xfRxfKer n . Linear algebra implies the relationship 

 

        fKerKerffKerfL dimdimImdimdimdim , 

 

where  )(   denotes the orthogonal complement. Since   dim Ker f


 1  there exists  Le , 

which is a basis vector of   Ker f


. An arbitrary  x L   can be uniquely decomposed as  

RfKerxexx   ,',' . Since  e   is orthogonal to  'x , one has 

 

eeeeexex   ' , 
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which implies that  
ee

ex




 . Since  f   is a linear map one obtains for all  x L   that  

)()()'()'()( efefxfexfxf   . It follows that 

 

axef
ee

ex
xf 




 )()( ,   with  

ee

eef
a






)(
. 

 

Uniqueness of  a   is immediate. Indeed, if  a   and  'a   are such that  ')( axaxxf   , 

then one has  0)'( aax   for all  x L , which is only possible if  a a' .  ◊ 

 

Applied to the Hahn-Banach separation theorem, there exists  nRa   such that  

}{inf}{sup ayax
CyKx




 . But the equation  cax    defines a hyper-plane in  nR . This leads 

to the following geometric equivalent form of Theorem 2.1. 

 

Theorem 2.3. (Separating hyper-plane theorem). Given are two convex sets  nRKC ,   such 

that  KC . Assume that  C0 , C   is compact and  K   is closed. Then there exists a 

hyper-plane nRH   that strictly separates C  and K .  

 

Proof. We follow Blackwell and Girshick [3], pp.34-35. Consider the shortest distance between  

C   and  K   in the Euclidean norm  xxx  , nRx , which is given by  

yxKCd
KyCx


 ,

inf),( . Since  C   is closed and bounded, and  K   is closed, there exist 

sequences }{},{ nn yx , with  Cxn  , Kyn    such that  ),(lim KCdyx nn
n




  and  

}{ ny   is bounded. This follows from the inequality  nnnn yxyx    and the fact that  

}{ nx   is bounded. The theorem of Bolzano-Weierstrass (e.g. Blatter [4], (6.22), p.82) implies 
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the existence of points  Cx 0   and Ky 0 , for which the shortest distance between  C   

and  K   is attained, i.e. one has  ),(min
,

00 KCdyxyx
KyCx




. We claim that the 

hyper-plane H , which goes through the middle point   002
1

0 yxz    of the line between 

0x and 0y , and is normal to this line, that is })(,)({ 00000 zyxcczyxRzH n   , 

strictly separates the sets C and K . To show this, consider an arbitrary point  z   with 

czyx  )( 00 . Then, the square of the distance between  0y   and a point of the line between  

0x and z is given by 

.)()(2))()(
2

00000

22

0

2

000 yxyxxzxzyxzx     

 

The derivative of this quadratic function at  0   yields the inequality 

 

00000000000 )(22)(2)(2)()(2)0(' xyxcxyxzyxyxxz   . 

 

By definition of the constant  c   one has 

 

0))(()()(
2

002
1

002
1

000000  yxyxxyxcxyx  , 

 

which implies that  0)0('  . Therefore, there exist points  w   on the line between  0x   

and  z   with  ),()0( 000 KCdyxyw   , which implies the condition  Cz   

by the convexity property. Since  z   is an arbitrary point with  czyx  )( 00 , one has  

cxyx  )( 00   for all  Cx , hence  HC   and  HC . In the same way, one 

shows that   HK   and  HK . Together this shows that the hyper-plane strictly 

separates the sets  C   and  K .  ◊ 
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For the main application in Section 4, one needs the following specialization of the Hahn-Banach 

separation theorem for a linear subspace. 

 

Corollary 2.1.  Given are two convex sets  nRKC ,   such that  KC . Assume that 

C0 , C  is compact and K  is a linear subspace. Then, there exists a linear map RRf n :  

with f y( ) 0  for all y C , and f x( )  0  for all x K . 

 

Proof.  One notes that the assumptions of Theorem 2.1 are fulfilled because a linear subspace is 

closed. This theorem implies that  )(inf)(sup yfxf
CyKx 

 . Since  K   is a linear subspace, one 

has  K0   and  0)0()(sup 


fxf
Kx

. If the supremum is strictly positive, then the linearity 

of the map  f   enforces that  )(xf   is unbounded (use that  )()( xcfcxf    for all  

0c ). But this is a contradiction to the statement that the supremum is strictly smaller than  

)(inf yf
Cy

. Even more, one must have  0)( xf   for all  Kx . Indeed, if  0)( xf   for 

some Kx , then by linearity one has  0)()(  xfxf , in contradiction to  0)(sup 


xf
Kx

. 

This shows that Corollary 2.1 follows from Theorem 2.1 or the equivalent Theorem 2.2.  ◊ 

 

Remark 2.1.  In Theorem 2.3 (or Theorem 2.1) the assumption that  C   is compact, is 

necessary. As a counterexample the convex and closed sets in 2R , which are given by 

},0),({ 12

x
yxRyxC    and  },0),({ 12

x
yxRyxK  , 

cannot be separated by a hyper-plane. Among all possible lines, only the line  0y   separates 

the sets  C   and  K . This is a one-dimensional subspace of  2R   but not a hyper-plane, 

which by definition does not meet the zero-point  0,0 . 
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3. One-period model of the financial market with a finite state space 

The one-period model of the financial market is specified by the following assumptions: 

(A1) There is a starting date  0t   and a terminal date  1t , and financial transactions at 

these dates are allowed. 

(A2) There is a finite state space   n ,...,1 , where each event     represents a 

possible state of the world, which is unknown at time  0t , and disclosed to the investor at 

time  1t . 

(A3) There is probability measure P  on   with  0)( P   for all   . 

(A4) There is a risk-free interest rate  0r . If a unit of money is invested at time  0t   

in the risk-free asset, then its value at time  1t   is the amount  r1 . 

(A5) There are  m   risky assets, whose prices at time  }1,0{t   are determined by the 

price vector   )(),...,()( 1 tStStS m . At the starting date the prices  )0(kS   are known 

positive constants, but the prices  )1(kS   are non-negative random variables, whose values are 

known to the investor only at terminal date 1t . 

 

To describe the financial market activities, one needs the following important notions. A trading 

strategy  },...,,{ 10 mHHHH    represents the portfolio an investor holds in the time interval  

 1,0 . The quantity  0H   is the amount invested in the risk-free asset while },...,1{, mkH k  , 

is the number of shares, which are invested in the k -th risky asset. The discounted value process 

of the portfolio represents the value of the whole investment at the times  1,0t , and is 

defined by 

 







m

k
kk

m

k
kk SH

r
HVSHHV

1
01

1
00 )1(

1

1
,)0( .  (3.1) 
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On recognizes immediately that the discounted profit of the portfolio is determined by the 

discounted changes in value of the risky assets given by  )0()1(
1

1
kkk SS

r
S 


 , 

},...,1{ mk . A formula for it is 

 

 


m

k
kk SHVVG

1
01 .      (3.2) 

 

An arbitrage strategy is a special trading strategy that yields a strictly positive expected profit, 

and is characterized by one of the following equivalent conditions: 

 

0,0 10  VV   and    01 VE P ,     (3.3) 

0G   and    0GE P .      (3.4) 

 

To show the equivalence of these conditions, suppose that  H   is an arbitrage strategy. From 

(3.2) one has  01 VVG  , hence (3.4) follows from (3.3). Conversely, suppose that (3.4) holds 

for a trading strategy  Ĥ . Consider the trading strategy  }ˆ,...,ˆ,{ 10 mHHHH  , with  

 




m

k
kk SHH

1
0 )0(ˆ .        (3.5) 

 

For this trading strategy one has  00 V . Further, one has  GGVV  01 , which implies that 

(3.4) implies (3.3), and  H   is an arbitrage strategy. Translated in everyday language, an 

arbitrage strategy is a risk-free possibility to earn money. One starts with nothing and, without 

any danger to get into debts, there is a chance to get a positive amount of money. It is therefore 

easy to understand that from the economics viewpoint arbitrage strategies should not exist in 

financial markets. A necessary and sufficient condition for this is provided by the very important 
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fundamental theorem of asset pricing. The next Section presents and proves this result for the 

considered one-period model of the financial market. 

  

4. Fundamental theorem of asset pricing 

The pursued path below is the mathematical quintessence of the approach in [24], Chapter 1.3. 

The same result for a multi-period of the financial market with a finite state space and a finite 

time horizon is also found in [24], Chapter 3.4. These results go back to Harrison and Kreps [14], 

and Harrison and Pliska [15]. It is remarkable that the fundamental theorem of asset pricing is 

valid for more general models of the financial market. These generalizations admit infinite state 

spaces or/and an infinite time horizon. However, the derivation of the extended results need 

advanced mathematical tools, which go far beyond the scope of an elementary presentation. An 

introduction to this issue is found in [24], Chapter 7. For alternative treatments of the 

fundamental theorem we refer to Kabanov and Kramkov [16], Kabanov and Stricker [17], 

Föllmer and Schied [11], as well as to the advanced and specialized developments in Dalang, 

Morton and Willinger [5], Schachermayer [25], [26], and Delbaen and Schachermayer [7], [8]. 

     To formulate the fundamental theorem one needs the following important notion. A 

risk-neutral probability measure  Q   on     is a probability measure with the properties 

0)( Q   for all   ,     (4.1) 

  },...,1{),0()1(
1

1
mkSSE

r
kk

Q 


.   (4.2) 

 

The equation (4.2) requires that the expected discounted price of any risky asset coincides with 

its starting price. The condition (4.1) tells us that any event of the state space occurs with a 

strictly positive probability. According to the assumption (A.3) this also holds for the underlying 

real-world probability measure  P   on   . One says that  P   and  Q   are equivalent 

probability measures. We derive now the simplest version of the fundamental theorem of asset 

pricing. 
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Theorem 4.1.  The one-period model of the financial market with a finite space is free of 

arbitrage if, and only if, there exists a risk-neutral probability measure. 

 

Proof. To enable the application of the results of Section 2, we identify the set of random 

variables on     with a Euclidean space as follows. A real random variable  RX :  

corresponds to a point   n

n Rxxx  ,...,1 , with mkXx kk ,...,1),(   . The derivation is 

carried out in two parts. 

Part 1:  The condition is sufficient 

Let  Q   be a risk-neutral probability measure and  H   an arbitrary trading strategy with the 

property  01 V   and    01 VE P . With (3.1) and (4.2) one has 

    0)1(
1

1
)0( 1

1
0

1
00 






VESEH
r

HSHHV Q
m

k
k

Q

k

m

k
kk

. 

Since  H   is arbitrary, one sees that (3.3) can never be fulfilled, which shows that there is no 

arbitrage strategy. 

Part 2:  The condition is necessary 

It is shown that if the financial market is free of arbitrage, then there exists a risk-neutral 

probability measure. Consider the set of all probability measures 

}1,0{
1




n

k
kk

n xxRxC ,     (4.3) 

and the set of all realizable discounted profit processes 

}{
1

1
 



m

k
kk

nn SHGxwithRHRxK .  (4.4) 

The set  C   is convex, compact and  C0 , and the set  K   is a linear subspace, which is 

convex and closed. Further, consider the set of non-negative random variables on   , which 

one identifies with the subset  },...,1,0{ nkxRxA k

n    of the Euclidean space. 

According to (3.4) the financial market is free of arbitrage if, and only if, one has  }0{AK . 
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Now, one has  AC   and  C0 . The arbitrage free assumption implies that  KC . 

The sets  C   and  K   satisfy herewith the assumptions of Corollary 2.1. Therefore, there is 

a linear map  RRf n :   with  0)( yf   for all  Cy , and  0)( xf   for all  

Kx . Since the points  )0,...,0,1,0,...,0(ke   (one at the  k -th place and zero elsewhere) 

belong to the set  C , one has  nkef k ,...,1,0)(  . It follows that 

1,,...,1,0
)(

)(
)( 


 k

k

k
kk Qmk

ef

ef
QQ  , 

yields a probability measure on   . A random variable  X   of the discounted profit process, 

which is represented by a point  x K , satisfies by Corollary 2.1 the property 

 
 

.0
)(

)(

)()(

)(















kk

kk

k

kk
kk

Q

ef

xf

ef

exf

ef

xef
xQXE    (4.5) 

In particular, for each  mk ,...,1   the random variable  kk SX    belongs to  K . On the 

other hand, the equation (4.5), that is   0 k

Q SE , is equivalent with the statement 

  mkSSE
r

kk

Q ,...,1),0()1(
1

1



.   (4.6) 

 

Finally, with (4.4) and (4.6) one sees that Q  is a risk-neutral probability measure.  ◊ 
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