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Abstract. We put forward an agent-based model of the stock market, where the behavior of agents showing the 

disposition effect can be offset by that of others using a stop-loss rule. In a stop-loss order, a stock is sold 

automatically if it drops below a threshold value. The disposition effect is the tendency to sell stocks that have 

gained in value (“winners”) and keep the ones that have fallen in value (“losers”). After showing the model can 

replicate actual return behavior considering data from the recent mini flash crashes, we explore the consequences of 

altering key behavioral parameters. Our primary result is that the presence of stop-loss agents in a non-Gaussian 

environment can offset the disposition effect. Furthermore, we find differing return targets to contribute to market 

efficiency, and a negative shock to a market sentiment index to cause the stock price to dip and trade volume to 

grow. Finally, increasing overconfidence generates higher trade volume. 
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1. Introduction 

 

Agent-based models can replicate the extreme moves observed in actual stock markets. 

Coupled with heterogeneous beliefs [1], such models also can take into account psychological 

features, such as market sentiment and overconfidence [2, 3]. Here we suggest the “disposition 

effect” (the tendency to sell winners and keep losers) can be offset by an automated stop-loss 

rule, which is a predetermined policy that reduces the portfolio’s exposure after it reaches a 

certain threshold of cumulative losses. 
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The most accepted explanation for the disposition effect is prospect theory. Because 

investors dislike incurring losses much more than they enjoy making gains, and investors are 

willing to gamble in the domain of losses, they will hold onto stocks that have lost value (relative 

to the reference point of their purchase) and will be eager to sell stocks that have risen in value. 

The disposition effect should lead to market failure in that it distorts the role of prices in 

conveying information. Indeed, disposition-effect investors will hold onto a stock even if they 

think it will fall further in value. The very existence of stop-loss investors can prevent such a 

massive market failure in that they can offset disposition-effect investors. Although this may 

seem obvious, our contribution is to show how the mechanics of the offsetting behavior operate 

with the help of a model. 

Indirect evidence supports the fact that in real-world markets, stop-loss rules can 

compensate for the disposition effect. Although stop-loss rules are ineffective in efficient 

markets [4], Kaminski and Lo [4] find stop-loss rules can reduce losses in a non-Gaussian 

environment, although they do not consider the presence of  the disposition effect. Their result 

matches the one we find in this work – the presence of stop-loss agents can offset the disposition 

effect given that the environment is non-Gaussian. 

The next section presents the model; the results are shown in the subsequent section; and 

the last section concludes the study. 

 

2. Model 

 

We consider a market populated by 10,000n   agents divided into two groups: 

disposition-effect investors (Eqs. (1)−(4) below) and stop-loss investors (Eq. (9)). We assign 

exogenously the group to which each agent pertains, as well as group size. The disposition-effect 

investors are modeled using the value function of cumulative prospect theory [5]. The investors 

under the stop-loss rule are modeled building on Ref. [4]. Each agent collects information from 

his neighborhood, and there are two exogenous parameters: 1) the ecology of distinct expected 

returns (
ix ), and 2) how one agent values the information he currently holds compared to 

information received from neighbors (
i ). They also consider information from a measure of 

sentiment at the market level. We also assume investors buy more stocks only after they have 

closed their previous position. 
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 Each time period t, agent i  must decide between either buying or selling the stock, or 

doing nothing. He enters the market with probability 
it , where: 
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If investor i  owns stocks, he is prone to the disposition effect, which is modeled by a 

version of the value function of cumulative prospect theory: 
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Here, we interpret the values of 
ix  as representing the fact that each agent i  has a distinct 

expected return. The investor places an order if a cumulative return 
iX  overshoots his expected 

return 
ix . (If  

ix  is large enough the investor may adopt a buy-and-hold strategy.) Parameter 

(0,1]  governs the function concavity, and   measures loss aversion. We set 2.25   (as in 

Ref. [5]) and thus endorse the prospect theory explanation for the disposition effect as loss 

aversion: The response to losses is more than twice as strong as the response to corresponding 

gains. As argued by Barberis and Xiong [6], when investors gain utility from accumulated 

operations during a year or other given time period, prospect theory does not lead to the 

disposition effect. However, when utility accrues from simple buy and sell operations, as in our 

model, prospect theory does predict a disposition effect. 

We define a market sentiment index I  at the market level as: 
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                                                                                                                  (3) 

 

where  1,1I   , b  is the number of buyers; s  is the number of sellers; and h  is the number of 

agents who are neither buying nor selling. The market sentiment is bearish ( 1I  ) if the 
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investor expects downward price movement due to the presence of many sellers. In the presence 

of many buyers, the market sentiment is bullish ( 1I  ). A current value of the index I  stays in 

place until the investor executes a future consultation of his neighborhood. Each agent uses index 

I  differently, and the random parameter  0,1i   captures this fact. In a full-fledged 

equilibrium model, a market clearing condition would imply that index (3) should be zero. In our 

disequilibrium model, however, we only expect (3) to asymptotically converge to zero when the 

parameter configuration and model dynamics will lead to stability. 

Assuming a bidimensional Moore grid [7], the neighbors of influence were defined by a 

“nine-neighbor square.” The lattice size was defined to have 100 100  cells, totaling 10,000 

traders. Eight neighbors can provide any of three types of information for the agent at hand: buy, 

sell or hold on his position. Such information will be used in the subsequent period. If the agent 

himself initially possesses some piece of information, then 1iO  ; if not, 0iO  . His own 

information comes from his last move. If the move was a purchase, his private information is a 

purchase. If the move was a sell, his private information is a sell. If in the last move the investor 

neither purchased nor sold, he doesn’t have his own information, in which case 0iO  . He puts a 

weight   to the value of his own information as compared to that possessed by his neighbors, 

i iO . If 0i  , the agent pays no attention to the information he owns. If 1i  , his own 

information is given the same weight as that of his neighbors. As 
i  grows, the weight given to 

his own information increases, and as 
i  , he considers only his own information, in which 

case we can say he exhibits “overconfidence.” 

If the investor has no stock, his probability 
it  is then: 
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The probability 
it  is greater the larger the market sentiment index is. In the first period 

it  

refers solely to his probability to buy because he starts with no stocks. An equation reminiscent 

of Eq. (4) is suggested in Ref. [8]. The neighborhood is important for current decisions, but a 
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wide-market index is more appropriate for evaluating market sentiment. Using a neighborhood 

measure would be too narrow. We assume investors can get information about the index, 

following Shiller [9]. Shiller uses questionnaires to get what we consider here as the 

“neighborhood perspective,” and assumes agents know the market sentiment from a broader 

market perspective. Since index I  is not computed for every time period, the neighborhood 

continues to be key for the current decisions of the agents in this model. Of note, in a given time 

period, the weight ascribed to the neighborhood is much greater than that of the index. (The 

probability to sell is analogous to Eq. (4).) 

 Individual choices are also constrained by what the group collectively does. When the 

parameter configuration and the model dynamics lead to stability and market clearing, such a 

constraint can be modeled by an excess demand function 
tD : 

 

t t
t

b s
D

n


                                                                                                                         (5) 

 

The stock price p  in the time period t  is then computed using the previous price and the excess 

demand. We consider a hyperbolic tangent functional form for the excess demand (as is Ref. 

[10]): 

 

  
1
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
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The initial price is arbitrary and does not interfere with the model dynamics. The agent’s initial 

realized return 
ir  is given by: 

 

1ln lnit t tr p p                                                                                                                  (7) 

 

Each agent maintains the cumulative return 
iX  from the date of purchase of the stock, defined 

by: 
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where 
iq  is the purchasing price. 

 An agent relying on the automated stop-loss rule places the stop order 
t  considering 

some loss threshold [8]: 
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where 
i  is the threshold for the automated order to be triggered, which assumes a different 

value for each agent. The first line in Eq. (9) refers to current return when the investor owns no 

stocks. If the investor owns any stocks, the current return no longer has any influence for him. 

He will look at the cumulative return, that is, the purchase value minus the current value. He is 

now contemplating one of the remaining three lines in Eq. (9). For this reason, there will be no 

situation in which the investor looks at the current return and the cumulative return at the same 

time. The first line is a rule of entry, then the investor picks one of the three remaining lines. The 

second line refers to the period in which the investor is inactive; the third is the rule of exit if the 

cumulative returns are negative; and the fourth is the exit rule for the cases where the cumulative 

return is positive. Eq. (9) is borrowed from Ref. [4]. Unlike the environment of the disposition 

effect (Eqs. (1)−(4)), in Eq. (9), an agent sells faster in a low and waits longer in a high. The 

stop-loss investors are committed to a deterministic rule, but some find it difficult to adhere to 

such a rule and may behave stochastically, in which case they follow the value function of 

prospect theory. 

 

3. Results 

 

To check for the empirical relevance of our model, we considered data from the recent 

mini flash crashes occurring in some stocks listed on the Dow Jones Industrial Average (Table 1 
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and Fig. 1). Returns are clearly non-Gaussian. Fig. 2 shows the histogram of the Apple stock and 

its poor Gaussian fit. 

 

Table 1. The stock returns for the period covering the mini flash crashes are not normally distributed. 

Stock Time period Lilliefors test  Excess kurtosis Reject normality? 

Abott Labs  April, 29 2011 – May, 31 2011 0.001  15.36  Yes 

Apple  March, 16 2012 − March, 30 2012 0.001  24.33  Yes 

Cisco Systems July, 20 2011 − July, 29 2011 0.001  24.31  Yes 

Core Molding August, 19 2011 − August, 31 2011 0.001 9.69  Yes 

Note: The critical values were computed using Monte Carlo simulation for sample sizes less than 1,000 and 

significance levels between 0.001 and 0.5. The result 0.5 means the data are generated by a Gaussian, and 0.001 

means rejection of Gaussianity 

 

 

Fig. 1. Log-returns of the stocks for the period of the mini flash crashes 
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Fig. 2. Apple’s return histogram and Gaussian fit 

 

Fig. 3 shows the log-returns generated by our model for 1i  ; an upper bound of 

0.16x  ; four groups of expectation targets ( 4i  ); and 25 percent of stop-loss agents. Fig. 4 

shows the histogram. After comparing with the previous Figs. 1 and 2, one can see that the 

model roughly replicates actual stock market behavior. 

 

Fig. 3. Log-returns generated by the model; compare with Fig. 1 
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Fig. 4. The model return histogram and Gaussian fit; compare with Fig. 2 

 

We are thus confident to proceed and explore some numerical implications of our model. 

Table 2 shows selected simulation results using NetLogo 

(http://modelingcommons.org/browse/one_model/3985#model_tabs_browse_procedures) for the 

benchmark case where all 10,000 agents are disposition-effect investors. We first assume 1   

and 0.16x  . Excess kurtosis abates and the market becomes more Gaussian as we add more 

groups with distinct return targets (as we increase i ). Thus, greater diversity of return targets 

contributes to market efficiency, if Gaussianity can be translated into market efficiency [7]. 

Kaminski and Lo [4] proved stop-loss strategies cannot generate any excess profits if returns are 

i.i.d., and the (weak) efficient market hypothesis assumes a white noise in the distribution of 

returns. In our model, if we drop the disposition effect from the model, returns become Gaussian. 

The very existence of disposition-effect investors makes it possible for stop-loss investors to 

profit. In a non-Gaussian environment, which occurs when the disposition effect is considered, 

we find the stop-loss rule to further contribute to market inefficiency. 
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Table 2. The model returns when all the agents are disposition-effect investors. 

Stop-loss investors i Excess kurtosis Jarque–Bera test Lilliefors test Reject normality? 

0 2 25.7 0.0000 0.001 Yes 

0 3 21.2 0.0000 0.001 Yes 

0 4 12.4 0.0000 0.001 Yes 

0 6 6.7 0.1745 0.138 Yes 

0 8 3 0.3880 0.186 No 

0 12 2.9 0.3614 0.190 No 

0 16 2.9 0.3516 0.235 No 

0 32 2.9 0.3022 0.117 No 

 

 

Table 3 shows the effect of the introduction of stop-loss agents who have the same x . 

Now the agents cannot contribute to make the market more Gaussian. With 4i  , however, we 

cannot reject return normality. The presence of stop-loss agents reduces the importance of the 

disposition effect in such a non-Gaussian environment. As observed, in Ref. [4] stop-loss rules 

cannot stop losses for Gaussian returns, but are effective for non-Gaussian ones. Our model 

confirms this. Starting from an endowment, agents using the stop-loss rule profit constantly, 

while others are subject to both gains and losses. 

 

Table 3. The model returns after the introduction of stop-loss investors. 

Stop-loss investors i Excess kurtosis Jarque–Bera test Lilliefors test Reject normality? 

5 4 16 0.0000 0.0010 Yes 

10 4 16 0.0000 0.0200 Yes 

20 4 22 0.0000 0.0010 Yes 

30 4 23 0.0000 0.0010 Yes 

40 4 14 0.0000 0.0010 Yes 

50 4 10 0.0000 0.0010 Yes 

 

 Our model recalculates the market sentiment index for each of the 50 periods. A once-

and-for-all negative shock of −20 to I  can make the stock price dip, after 100 periods, from 116 

to 99. As a result, trade volume grows (Fig. 5). The reverse is true for a positive shock. 
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Fig. 5. Effects of shocks coming from the market sentiment index I  

 

Fig. 6 shows the effect of overconfident agents as 
i  increases. Considering 25 percent 

of stop-loss investors and 4i  , as 
i  rises, both price and volume increase. As a result, 

overconfidence, which is accompanied by larger trade volume does not necessarily translate into 

losses for the investors. This is because the volume increase is not due to the disposition-effect, 

and the stop-loss agents are not affected by changes in 
i . 

 

 

Fig. 6. The effect of overconfidence as i  increases from 0.1 to 1 and then to 10 

 

 The 10 simulation results in Table 4 show that the two groups of agents behave in tandem. 

The stop-loss agents keep winners 20 percent longer than the disposition-effect agents. And the 

stop-loss agents also sell the losers 53 percent faster. 
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4. Conclusion 

 

We set up a model of the stock market that considers agents subject to the disposition 

effect and an offsetting stop-loss rule. The model can replicate actual return behavior considering 

data from the recent mini flash crashes. We explore the consequences of altering key behavioral 

parameters and show that differing return targets contribute to market efficiency; that a negative 

shock to the market sentiment index causes the stock price to dip and trade volume to grow; and 

that increasing overconfidence generates higher trade volume. More importantly, the presence of 

stop-loss agents in a non-Gaussian environment offsets the disposition effect. 

 

Table 4. Offsetting the disposition effect 

Simulations 

with 1,000 

periods each 

Disposition-effect 

agents: number of 

periods keeping 

winners 

Disposition-effect 

agents: number of 

periods keeping 

losers 

Stop-loss agents: 

number of periods 

keeping winners 

Stop-loss agents: 

number of periods 

keeping losers 

1 196 408 283 88 

2 190 381 266 84 

3 348 220 181 457 

4 119 240 136 85 

5 148 364 236 63 

6 137 326 175 170 

7 260 198 238 296 

8 194 394 251 191 

9 136 227 177 41 

10 202 482 372 40 

Average 193 324 231 151 
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