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Abstract. In this paper, I prove the closed-form extension of the Schwartz and Smith (2000) model of commodity

futures pricing to state-dependent risk premia. The extended model exhibits important additional flexibility in

representing different term-structure patterns.
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1. Introduction

The Schwartz and Smith (2000) model of commodity futures pricing has been widely used

in the theoretical and empirical literature on commodity spot and derivatives markets, as it

provides a way to disentangle the permanent ‘equilibrium’ component of the commodity spot

price from its transitory component via futures price data. Primed by the studies of Fama
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and French (1987) and of Casassus and Collin-Dufresne (2005) on the importance of time-

varying risk premia in commodity markets, Mirantes, Población, and Serna (2015) have recently

proposed an important extension of the Schwartz and Smith (2000) model that considers state-

dependent risk premia. Mirantes, Población, and Serna (2015) work out the general risk-neutral

valuation scheme for a range of commodity contingent claims without, however, providing a

fully explicit solution for the futures prices. Their main concern is investigating the impact

of time-varying risk premia on commodity American options. I contribute (1) by deriving the

fully closed form of futures prices from no-arbitrage restrictions written under the physical

measure, which highlight the presence of the state-dependent risk premia, and (2) by detailing

the incremental impact of such risk premia on the term structure of the futures prices.

2. No-arbitrage futures pricing

Schwartz and Smith (2000) assume that the spot log price of a given commodity is the sum

of two components: ln(St) = χt + ξt . The non-stationary ‘equilibrium’ component ξt is an

arithmetic Brownian motion with P-dynamics dξt = µξ dt +σξ dzξ

t , where P is the physical

probability measure. The stationary component χt is assumed to revert toward zero following

an Ornstein-Uhlenbeck process with P-dynamics dχt =−κχtdt +σχdzχ

t (κ > 0). Under no

arbitrage in the commodity derivatives markets, the state price density ζt has P-dynamics

dζt = ζt

(
−rdt−Λξ ,tdzξ

t −Λξ ,tdzχ

t

)
,

where r is the riskfree rate. I depart from the Schwartz and Smith (2000) model by assuming

state-dependent risk premia.

Assumption The market prices of risk are state-dependent,

Λξ ,t = λξ +φξ χt (price of ξ -type risk),

Λχ,t = λχ +φχ χt (price of χ-type risk),

and the speed of mean reversion remains positive after risk adjustment, κ +σχφχ > 0.

The original Schwartz and Smith (2000) model ensues by assuming away the dependence of

Λξ ,t and Λχ,t from the state χt (φξ = 0 and φχ = 0). Let F (ξt ,χt ,τ) be the current futures price
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of the commodity for delivery in τ years. The no-arbitrage restriction under P for F (ξt ,χt ,τ)

emphasizes the presence of the state-dependent risk premia:

(1)

 EP
t [dF ] =

(
Fξ σξ Λξ ,t +FχσχΛξ ,t

)
dt,

F (ξt ,χt ,0) = exp(χt +ξt) .

The resulting no-arbitrage futures price is characterized in the following proposition.

Proposition The function F (ξt ,χt ,τ) that solves the problem (1) is

F (ξt ,χt ,τ) = exp( ξt + χtA(τ) + B(τ) ) ,

with

(2) A(τ) =
(

1+
σξ φξ

κ +σχφχ

)
e−(κ+σχ φχ )τ −

σξ φξ

κ +σχφχ

,

(3) B(τ) = Dτ +G
(

1− e−2(κ+σχ φχ )τ
)
+H

(
1− e−(κ+σχ φχ )τ

)

D =

(
µξ −σξ λξ +

σ2
ξ

2

)
− (σξ σχρξ χ −σχλχ)

σξ φξ

κ +σχφχ

+
σ2

χ

2
(σξ φξ )

2

(κ +σχφχ)2 ,

G =
σ2

χ(κ +σχφχ +σξ φξ )
2

4(κ +σχφχ)3 ,

H =
(κ +σχφχ +σξ φξ )

[
(κ +σχφχ)(σξ σχρξ χ −σχλχ)− (σξ φξ )σ

2
χ

]
(κ +σχφχ)3 .

Proof. Under P, the ex-ante marking-to-market instantaneous gain on being long the futures

contract is

EP
t [dF ] =

(
−Fτ +Fξ µξ −Fχκχt +

1
2

Fξ ξ σ
2
ξ
+Fξ χσξ σχρξ χ +

1
2

Fχχσ
2
χ

)
dt,
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where d
〈

zξ

t ,z
χ

t

〉
= ρξ χdt. Given the Ansatz exp(ξt +χtA(τ)+B(τ)), the no-arbitrage pricing

problem (1) turns out to be a system of first-order ordinary differential equations in the time-to-

maturity variable τ:

−A′−Aκ = σξ φξ +Aσχφχ ,

−B′+µξ +
1
2σ2

ξ
+Aσξ σχρξ χ +

1
2A2σ2

χ = σξ λξ +Aσχλχ ,

A(0) = 0,

B(0) = 0.

Its solution is given by (2) and (3). This completes the proof.

Importantly, the exposure of the market price of ξ -type risk to the transitory component χt

(φξ 6= 0) implies that, even if deprived of full unit-root persistence (κ > 0 and κ +σχφχ > 0),

χt has a futures-price impact that does not vanish as the delivery date diverges (τ →+∞):

A(∞) =−
σξ φξ

κ +σχφχ

.

The next section visualizes and discusses the additional impact of state-dependent risk premia

on the term structure of the futures prices.

3. Term-structure patterns

The analysis requires the expected spot price in τ years from now, which Schwartz and Smith

(2000) work out to be (in log levels)

lnEP
t [St+τ ]) = ξt + χte−κτ +

(
µξ +

σ2
ξ

2

)
τ +

σ2
χ

4κ

(
1− e−2κτ

)
+

σξ σχρξ χ

κ

(
1− e−κτ

)
.

It will be plotted in black in the following figures. Another important pricing benchmark is the

futures price prevaling at distant delivery dates, which is (in log levels)

ξt + χtA(∞) + Dτ + G + H .

It will be plotted in grey. The futures log price lnF (ξt ,χt ,τ) will be plotted in red. I fix

µξ = 7%, σξ = 20%, κ = 0.4 (that is a “half-life” of the transitory component χt of about 21

months under P), σχ = 15%, and ρξ χ = 0.5. The permanent component ξt of the spot log price

is normalized to 1.
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Figure 1

χt = 0 χt = 1 χt =−1

Figure 2

χt = 0 χt = 1 χt =−1

I begin with focusing on the pricing impact of Λξ ,t . Figure 1 shows the term-structure impli-

cations of the original Schwartz and Smith (2000) model with φξ = φχ = λχ = 0 and λξ = 1.

The positive risk premium implies normal backwardation (i.e. lnEP
t [St+τ ])> lnF (ξt ,χt ,τ) for

τ > 0) and its size (D < 0) generally causes backwardation (i.e. lnF (ξt ,χt ,τ) decreases with τ)

but for large negative transitory deviations from ξt , which prompt contango over the short-to-

medium maturity dates (i.e. lnF (ξt ,χt ,τ) increases there with τ). Figure 2 visualizes the effect

of switching on the state-dependent nature of Λξ ,t . Given φξ = 1, the changes in the slope D

of the long-term futures log price and in its constant-intercept terms G and H are not substan-

tial. What makes the difference is χt’s long-run futures-price impact A(∞), which loads the

state χt in the intercept of the long-term futures log price. Large positive transitory deviations

foster a stronger backwardation (χtA(∞)< 0), whereas large negative deviations strengthen the

contango over the short-to-medium maturity dates (χtA(∞)> 0).
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Figure 3

χt = 0 χt = 1 χt =−1

Figure 4

χt = 0 χt = 1 χt =−1

I now turn to the pricing impact of Λχ,t . Figure 3 depicts the term-structure implications

of the original Schwartz and Smith (2000) model with φξ = φχ = λξ = 0 and λχ = 1. Again,

the positive risk premium brings about normal backwardation. However, the slope D of the

long-term futures log price is only slightly affected by λχ and remains positive, generating

long-term contango. Backwardation over the short-to-medium maturity dates stems only from

a large positive χt . Figure 4 shows that activating the state-dependent nature of Λξ ,t (φχ = 1)

has a subdued impact on the term structure of futures prices, the main change being their faster

convergence toward the long-term benchmark (κ +σχφχ > κ).

4. Conclusions

For a generic commodity, I work out the proof of the closed-form extension of the celebrated

Schwartz and Smith (2000) model of spot/futures pricing to state-dependent risk premia and

point out that state dependence in the market price of the permanent spot-price risk plays an

important role in shaping the term structure of futures prices.
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