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Abstract. This paper studies the value of mortgage contract by assuming the market interest rate follows the

Cox-Ingersoll-Ross (CIR) model and correspondingly the borrower’s optimal strategy to make prepayment. The

problem is formulated as a partial differential equation with initial and boundary conditions imposed by the contract

conditions. Finite difference approach is applied to solve (1) the optimal prepayment interest rate; (2) the value of

the mortgage contract when prepayment is allowed. In addition, numerical solutions are verified with analytical

asymptotic results for the small volatility scenario.
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1. Introduction

The valuation of mortgages is an intriguing problem in finance. When prepayment is al-

lowed, as is a typical condition offered by lenders to attract home buyers, the borrower faces

an optimal control problem in the filtration of market information [12, 20, 21]. Prepayment

grants a borrower the right to choose any time to settle the loan balances all at once by taking
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advantage of the lower interest rate. The borrower can leverage on the choice of prepayment to

optimize his portfolio so that a maximum possible return can be made in statistical sense giv-

en the knowledge of the underlying market interest rate. According to Feymann-Kac theorem

(see [5, 14, 9], for instance), the value of such a contract is determined by a system of par-

tial differential equations, with boundary and initial conditions imposed by the contract clauses

such as the originating loan amount and monthly payment plans. Because of the important

role played by the mortgage securities in real economy, there exists a considerable literature

(see [2, 10, 15, 4], for example) dedicated to the topic. In recent development, a free boundary

approach was applied to valuation of mortgages where the free boundary defines the threshold

market interest rate below which it is optimal for the borrower to settle the mortgage balance

([17, 18]). The integral representation of the solutions to mortgage valuation problems as used

in [18], for example, requires the existence of the corresponding Green’s functions, making

such solutions less flexible, in some sense, from financial practitioners’ perspective. Classic

binomial scheme for the problem is also possible. Examples of using binomial tree to solve the

problem can be found in [8, 9]. But as it is commonly known, the binomial tree method is low in

computing speed and rate of convergence [1, 7]. This work intends to solve the problem using

finite difference approach. The feasibility of the approach applied for the valuation of options

with early exercise features is suggested by [13].

We consider a mortgage contract model where the debtor pays m (dollars) per month with

monthly interest rate r0. At each time t, the outstanding mortgage balance, M(t), is determined

by the following ODE:

dM(t) =−m+ r0M(t).

At the expiration time T , M(T ) = 0. Then the ODE has a unique solution

M(t) =
m
r0
(1− e−m(T−t)).

Assume that the debtor can terminate the contract by paying-off the outstanding balance all at

once. Theoretically, there exists an optimal interest rate, denoted as h(τ), where τ = T − t, for

the borrower to make such a prepayment decision. The optimal prepayment boundary separates

the domain of the spatial variable, which in our case is the interest rate, into two regions, namely,
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the continuation region within which the borrower continues paying the monthly installment and

the early contract closing region within which the borrower settles the outstanding loan. The

market interest rate in this paper is assumed to follow the CIR process [3], i.e.,

dr(t) = (α−β r(t))dt +σ
√

r(t)dW (t), (1)

where W (t) is a Wiener process modeling the random market risk factor, α , β are positive

constant parameters, and σ is a non-negative constant parameter.

To find the borrower’s optimal strategy of prepayment, we set V (r, t) as the expected value

of the contract at time t with the current market interest rate r. As discussed in [17], the value

V (r, t) is a fair price at which a rational buyer would offer to take over the contract. Since

the debtor can choose to prepay the loan at a lower interest rate, the range of V (r, t) is from 0

to M(t). Assuming that the debtor will choose to prepay the outstanding mortgage when the

market interest rate is at h(τ) or below, we solve the problem by deriving the following system

( see [17, 18]):

1
2

σ
2r

∂ 2V
∂ r2 +(α−β r)

∂V
∂ r
− ∂V

∂τ
= rV −m, for r > h(τ),τ > 0,

V (τ,h(τ)) =
m
r0

(
1− e−r0τ

)
, for r ≤ h(τ),τ > 0,

V (τ,rmax) = 0, τ ∈ [0,T ],

V (0,r) = 0, r > 0,

(2)

augmented with the ’smooth pasting’ condition at the optimal exercise boundary h(τ)

∂V
∂ r

(τ,h(τ)) = 0. (3)

We let Ω = {(τ,r)|0≤ τ ≤ T,rmin ≤ r ≤ rmax} to be the whole plane. We divide the r-axis into

equally spaced nodes, distanced apart by δ r, and the τ-axis equally distanced apart by δτ . Then

the total number of meshes in the r-axis is J = [ rmax−rmin
δ r ], while the total number of meshes in

the τ-axis is I = [ T
δτ
].

We may convert the floating boundary in (2) to a fixed boundary by letting

y = ln
r

h(τ)
.
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Thus, (2) can be transformed to

σ2

2h(τ)ey
∂ 2V
∂y2 −

[
(α−βh(τ)ey)

h(τ)ey +
σ2

2h(τ)ey +
h′(τ)
h(τ)

]
∂V
∂y

+
∂V
∂τ

+h(τ)eyV = m, for y > 0

V (τ,0) =
m
r0

(
1− e−r0τ

)
, for y≤ 0

V (τ,ymax) = 0, τ ∈ [0,T ]

V (0,y) = 0, ∀ y ∈ R.
(4)

Accordingly, the free boundary condition defined by (3) is transformed as

∂V
∂y

(τ,0) = 0. (5)

In financial management, the rational debtor will compare the spot interest rate rτ and the

upper bounded interest rate h(τ). If rτ is less than the theoretical boundary h(τ) at time τ , it is

wise for the debtor to prepay. Otherwise, the debtor will wait until the spot interest rate reaches

the boundary. Thus, the optimal boundary occurs at r = hτ , or equivalently y = 0.

2. The floating boundary

At y = 0, the PDE in (4) yields a lower boundary condition for the finite difference scheme

proposed by this paper, i.e.,

σ2

2h(τ)
∂ 2V
∂y2 = m

(
1− e−r0τ

)(
1− h(τ)

r0

)
. (6)

The discretization of (5) by a central difference scheme gives rise to

V (τi,δy)−V (τi,−δy)
2δy

= 0⇒V (τi,δy) =V (τi,−δy).

An implicit finite difference scheme to (6) yields

V (τi,δy) =
h(τi)δy2

σ2 m
(
1− e−r0τi

)(
1− h(τi)

r0

)
+V (τi,0)

=m
(
1− e−r0τi

)[h(τi)δy2

σ2

(
1− h(τi)

r0

)
+

1
r0

]
.

(7)
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To simplify notation, we let

a =
σ2δτ

2δy2h(τ)ey +

[
(α−βh(τ)ey)

h(τ)ey +
σ2

2h(τ)ey +
h′(τ)
h(τ)

]
δτ

2δy
,

b =

[
1

δτ
− σ2

δy2h(τ)ey +h(τ)ey
]

δτ,

c =
σ2δτ

2δy2h(τ)ey −
[
(α−βh(τ)ey)

h(τ)ey +
σ2

2h(τ)ey +
h′(τ)
h(τ)

]
δτ

2δy
.

Applying implicit scheme to the PDE in (4) gives

V (τi,y j) = a( j)V (τi+1,y j−1)+b( j)V (τi+1,y j)+ c( j)V (τi+1,y j+1)−mδτ, (8)

with
h′(τ)
h(τ)

=
h(τi)−h(τi+1)

δτh(τi)
. (9)

Then the problem becomes to solve for V such that V (i, :)T = A∗V (i+1, :)T +C, where

A =



er0δτ 0 0 0 · · · 0 0 0

a(1) b(1) c(1) 0 · · · 0 0 0

0 a(2) b(2) c(2) · · · 0 0 0

0 0 a(3) b(3) · · · 0 0 0
...

...
...

... . . . ...
...

...

0 0 0 0 · · · b( j−2) c( j−2) 0

0 0 0 0 · · · a( j−1) b( j−1) c( j−1)

0 0 0 0 · · · 0 0 1


(J+1)∗(J+1)

and

CT =
(

m
r0
(1− er0δτ) −δτm −δτm −δτm · · · −δτm −δτm 0

)
1∗(J+1)

.

Given h(0) = h(τ0), we implement the iteration algorithm according to the following steps:

(1) Define matrix A and vector C.

(2) Start with an initial guess of h(1), find the solution vector V by solving the above lin-

ear system. Calibrate the solution vector by shrinking δτ and δ r and, or equivalently

increasing I and J, until an prescribed error tolerance is reached (10−6), thus get the
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solution V matching the initial guess of h(1). Compare the computed V (τ1,δy) with the

solution of V (τ1,δy) provided in (7) (derived from (4)). Record the error between these

two solutions.

(3) Calibrate h(1) and repeat the solution procedure in step (2) until the recorded error is

less than the prescribed tolerance level (10−4).

(4) Repeat the above procedure to obtain h(i) for i = 2,3, ...,n.
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FIGURE 1. The optimal boundary of prepayment by variation of β .

Figure 1 and 2 display the numerical values of the optimal refinancing boundaries by varia-

tion of β and α

β
accordingly. One may refer to [6, 17] for the choice of reasonable parameter

values for the purpose of empirical test. One can see that h(τ) is the upper boundary for optimal

prepayment, implying the debtor will prepay if the market rate r is less than h(τ). When CIR

model is used for a market, it is theoretically assumed that the interest rate is always nonnega-

tive. The market rate may never reach a theoretically computed negative h(τ). In this scenario,

an optimal prepayment is not possible from the borrower’s point of view. Figure 1 is an example

plot of the optimal prepayment boundary for the mortgage contract.

3. A special case



FINITE DIFFERENCE TO MORTGAGE VALUATION 7

0 5 10 15 20
−0.01

0

0.01

0.02

0.03

0.04

0.05

τ

h
(τ

)

 

 
α/β=0.06
α/β=0.07
α/β=0.08
α/β=0.09

FIGURE 2. The optimal boundary of prepayment by variation of α

β
.

FIGURE 3. The value of V (τ,r) by implicit method with floating boundary, with

β = 0.5, α

β
= 0.07 and σ = 0.1.
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When σ = 0, the PDE in (2) is reduced to the following one:

∂V
∂τ
− (α−β r)

∂V
∂ r

+ rV = m. (10)

The explicit solution using the characteristic function approach for small σ is given by (see

[19])

V (r,τ) = me−
r−α

β

β

∫
τ

0
e−

α

β
s+

r−α

β

β ds.

On the boundary h(τ), the value of the contract is known as V = m
r0
(1− e−r0τ). Define

Q =V (r,τ)−V (h(τ),τ) = me−
r−α

β

β

∫
τ

0
e−

α

β
s+

r−α

β

β ds− m
r0

(
1− e−r0τ

)
,

h(τ) can be obtained by solving Q = 0 numerically.
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FIGURE 4. The optimal boundary when r0 >
α

β
.

We restrict our attention to a rectangular mesh around (t j,rm) with uniform time step size

δ t = t j+1− t j and space mesh size δ r = r j+1− r j for the case when σ → 0. Let c = −(α −

β rm) =−(α−β (r0 +mδ r)). Recall that

∂V
∂ r
|(τ j,rm) =

V (τ j,rm+1)−V (τ j,rm)

δ r
,
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FIGURE 5. The optimal boundary when r0 <
α

β
.

∂V
∂τ
|(τ j,rm) =

V (τ j+1,rm)−V (τ j,rm)

δτ
.

Substitute the above two expressions into (10), we have

V (τ j+1,rm) = [1+
cδ t
δ r
−δτ(r0 +mδ r)]V (τ j,rm)−

δτc
δ r

V (τ j,rm+1).

To simplify our notation, we let η = cδ t
δ r , and thus

V (τ j+1,rm) = [1+η−δτ(r0 +mδ r)]V (τ j,rm)−ηV (τ j,rm+1). (11)

To meet the stability requirement, let

V (τi,rm) = eikrm

and

V (τi+1,rm) = λeikrm,

where λ is the magnification factor. Substituting into (11) leads to

λeikrm = [1+η−δτ(r0 +mδ r)]eikrm−ηλeikrmeikδx
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The von Neumann stability (see [11]) requires that |λ |2 ≤ 1, or equivalently,

(1+η−δτ(r0 +mδ r))2−2(1+η−δτ(r0 +mδ r))η cos(kδ r)+η
2 ≤ 1,

where further algebraic implication may be possible, but not necessary for checking specific

algorithms. To prove the consistency of the implicit scheme, note that

V (τ j+1,rm)−V (τ j,rm)

δτ
− (α−β r)

V (τ j,rm+1)−V (τ j,rm)

2δ r
+ rV (τ j+1,rm) = 0.

Let

pδτ,δ rφ =
φ(τ j+1,rm)−φ(τ j,rm)

δτ
− (α−β r)

φ(τ j,rm+1)−φ(τ j,rm)

2δ r
+ rφ(τ j+1,rm).

As

φ(τ j,rm±1) = φ(τ j,rm)±δ rφr +
1
2

δ r2
φrr±

1
6

δ r3
φrrr +o(δ r),

thus, we have
φ(τ j,rm+1)−φ(τ j,rm)

2δ r
= δ rφr +

1
6

δ r3
φrrr +o(δ r),

which implies

pδτ,δ rφ = φτ − (α−β r)φr + rφ(τ j,rm+1)− (α−β r)
1
6

δ r3
φrrr−

φ(τ j,rm)

δτ
− δ r2φrr

2τ
.

The method is consistent as δ r,δτ → 0 . To numerically demonstrate the convergence of the

method, we first notice that the results of V tend to be stationary as r→ rmax. Recall that one

of the boundary conditions is V (τ,rmax) = 0, which means the V → 0 when rmax → ∞. But

the upper boundary is set as rmax = 1 in our computation, which may affect the accuracy of

the results. To make comparisons with existing explicit solutions, we focus on the case when

σ = 0. The following Table 1 records the errors between the exact solution and the solution

using the finite difference scheme.

4. Concluding remark

This paper focuses on the numerical approach for valuing the mortgage contract and obtain-

ing the best strategy for debtors to make prepayment. Finite difference method is proposed and

designed to solve the governing partial differential equations. The finite difference schemes are
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V(rJ−1,τ) J = 64 J = 128 J = 256 J = 512

V(rJ−1,1) 8.029883641 7.969268381 7.943120935 7.937716918

V(rJ−1,2) 8.038035387 7.977297518 7.951097461 7.945682554

V(rJ−1,3) 8.038043663 7.977305607 7.951105471 7.945690548

V(rJ−1,4) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,5) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,6) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,7) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,8) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,9) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,10) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,11) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,12) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,13) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,14) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,15) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,16) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,17) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,18) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,19) 8.038043671 7.977305615 7.951105479 7.945690556

V(rJ−1,20) 8.038043671 7.977305615 7.951105479 7.945690556

TABLE 1. Errors for different grid J by implicit method (in 10−5) , when δτ = 1.

tested with both fixed boundaries and floating boundaries for the problem. Numerical exper-

iments are provided and compared with analytical results for small market volatility environ-

ment. The method is robust and can be applied to other option valuation problems. As one of

the possible future directions, it would be interesting to incorporate the housing value into the

model and investigate the collective and interactive effects of interest rate and property value on

mortgage price.
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