A new iterative method for solving a system of generalized equilibrium problems, generalized mixed equilibrium problems and common fixed point problems in Hilbert spaces
Abstract
In this paper, we introduce an iterative method for finding a common element of the set of solutions of a generalized mixed equilibrium problem (GMEP), the solutions of a general system of equilibrium problem and the set of common fixed points of a finite family of nonexpansive mappings in a real Hilbert space. Then, we prove that the sequence converges strongly to a common element of the above three sets. Furthermore, we apply our result to prove four new strong convergence theorems in fixed point problems, mixed equilibrium problems, generalized equilibrium problems , equilibrium problems and variational inequality.
Advances in Fixed Point Theory
ISSN: 1927-6303
Editorial Office: [email protected]
Copyright ©2025 SCIK Publishing Corporation