Approximate fixed point theorems of cyclical contraction mapping on G-metric spaces
Abstract
This paper introduce a new class of operators and contraction mapping for a cyclical map T on G-metric spaces and the approximately fixed point properties. Also, we prove two general lemmas regarding approximate fixed Point of cyclical contraction mapping on G-metric spaces. Using these results we prove several approximate fixed point theorems for a new class of operators on G-metric spaces (not necessarily complete). These results can be exploited to establish new approximate fixed point theorems for cyclical contraction maps. Further, there is a new class of cyclical operators and contraction mapping on G-metric space (not necessarily complete) which do not need to be continuous. Finally, examples are given to support the usability of our results.
Advances in Fixed Point Theory
ISSN: 1927-6303
Editorial Office: [email protected]
Copyright ©2024 SCIK Publishing Corporation