On the class of two dimensional Kolmogorov systems
Abstract
In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form
\[
\left\{
\begin{array}{l}
x^{\prime }=x\left( P\left( x,y\right) +R\left( x,y\right) \ln \left\vert
\frac{A\left( x,y\right) }{B\left( x,y\right) }\right\vert \right) , \\
y^{\prime }=y\left( Q\left( x,y\right) +R\left( x,y\right) \ln \left\vert
\frac{A\left( x,y\right) }{B\left( x,y\right) }\right\vert \right) ,
\end{array}
\right.
\]
where $A\left(x,y\right)$, $B\left(x,y\right)$, $P\left( x,y\right)$, $Q\left(x,y\right)$, $R\left(x,y\right)$ are homogeneous polynomials of degree $a$, $a$, $n$, $n$, $m$ respectively. Concrete example exhibiting the applicability of our result is introduced.
Engineering Mathematics Letters
ISSN 2049-9337
Editorial Office: [email protected]
Copyright ©2025 SCIK Publishing Corporation