Mathematical model on the impact of protection against tungiasis transmission dynamics
Abstract
In this study, a mathematical model based on a system of ordinary differential equations is formulated to describe the dynamics of tungiasis infection incorporating protection as a control strategy against infection. The basic reproduction number is computed using the next generation matrix approach. The existence of the steady states of the model are determined and the stability analysis of the model carried out. By Routh-Hurwitz criterion the disease free (DFE) and the endemic equilibrium (EE) points are found to be locally asymptotically stable. Numerical simulation of the model carried out showed that a high protection rate leads to a low tungiasis prevalence in a given population.
Copyright ©2024 JMCS