Min-phase-isometries on the unit sphere of Lp-type spaces
Abstract
Let X,Y be two real Lp-spaces (p>0), then a surjective map f:SX->SY satisfies
min{||f(x)+f(y)||,||f(x)-f(y)||} = min{||x+y||,||x−y||} (x,y∈SX),
if and only if f is a multiplication of a linear isometry and a map with rang {−1,1}. It can be regarded as a new Wigner’s theorem for real Lp-spaces (p>0).
min{||f(x)+f(y)||,||f(x)-f(y)||} = min{||x+y||,||x−y||} (x,y∈SX),
if and only if f is a multiplication of a linear isometry and a map with rang {−1,1}. It can be regarded as a new Wigner’s theorem for real Lp-spaces (p>0).
Advances in Fixed Point Theory
ISSN: 1927-6303
Editorial Office: [email protected]
Copyright ©2025 SCIK Publishing Corporation