Analysis of nonlinear radiative microwave heating of hyperthermia tumor cells therapy in a porous medium
Abstract
This work examines the theoretical analysis of the nonlinear thermal radiation therapy that involves microwave heating of the hyperthermia tumor cell. The heat transfer is carried out in a porous medium and is time dependent. Non-dimensionalized variables and quantities were used as the main modeled equations alongside the Dirichlet boundary conditions for physical interpretation. The dimensionless equation accurately predicts the blood temperature distributions within the tissues, by using stable and unconditional convergent finite difference of semi-implicit type. Tumor cells death occurred due to increased cells sensitivity to non-linear thermal radiation and blood flow emanating from the hyperthermia treatment. The results showed that applying high metabolic heat of $3.97X10^5Wm^{-3}$ on tumor cells have a therapeutic effect.
Commun. Math. Biol. Neurosci.
ISSN 2052-2541
Editorial Office: [email protected]
Copyright ©2024 CMBN