A SEIQRD epidemic model to study the dynamics of COVID-19 disease
Abstract
In this paper, we propose a COVID-19 epidemic model with quarantine class. The model contains 6 sub-populations, namely the susceptible (S), exposed (E), infected (I), quarantined (Q), recovered (R), and death (D) sub-populations. For the proposed model, we show the existence, uniqueness, non-negativity, and boundedness of solution. We obtain two equilibrium points, namely the disease-free equilibrium (DFE) point and the endemic equilibrium (EE) point. Applying the next generation matrix, we get the basic reproduction number (R0). It is found that R0 is inversely proportional to the quarantine rate as well as to the recovery rate of infected subpopulation. The DFE point always exists and if R0 < 1 then the DFE point is asymptotically stable, both locally and globally. On the other hand, if R0 > 1 then there exists an EE point, which is globally asymptotically stable. Here, there occurs a forward bifurcation driven by R0. The dynamical properties of the proposed model have been verified our numerical simulations.
Commun. Math. Biol. Neurosci.
ISSN 2052-2541
Editorial Office: [email protected]
Copyright ©2024 CMBN