Products of differentiation and weighted composition operators from hardy spaces to weighted-type spaces

Waleed Al-Rawashdeh

Abstract


Let $\mathcal{H}(\mathbb{D})$ be the space of all analytic functions on the open unit disk $\mathbb{D}$. Let $\psi_1$ and $\psi_2$ be analytic functions on $\mathbb{D}$, and $\phi$ be an analytic self-map of $\mathbb{D}$. We consider the operator $T_{\psi_1,\psi_2,\phi}$ that is defined on $\mathcal{H}(\mathbb{D})$ by $$\left(T_{\psi_1,\psi_2,\phi}f\right)(z)= \psi_1(z)f(\phi(z))+\psi_2(z)f^{\prime}(\phi(z)).$$ In this paper, we characterize the boundedness and compactness of the operator $T_{\psi_1,\psi_2,\phi}$ that act from the Hardy spaces $H^p$ into the weighted-type space $H^{\infty}_{\mu}$ and the little weighted-type space $H^{\infty}_{\mu, 0}$.

Full Text: PDF

How to Cite this Article:

Waleed Al-Rawashdeh, Products of differentiation and weighted composition operators from hardy spaces to weighted-type spaces, J. Math. Comput. Sci., 9 (2019), 167-181

Copyright © 2019 Waleed Al-Rawashdeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Copyright ©2024 JMCS