Remark on stability of fractional order partial differential equation

Govind P. Kamble, Mohammed Mazhar-Ul-Haque

Abstract


In this paper, using a fractional order partial derivative with non-singular kernel we investigate, the stability and its generalization on semi-closed and semi-open interval for the solution of a fractional order partial differential equation with the help of an inequality.

In this paper, we will consider the following fractional order partial differential equation

\begin{equation}

\frac{\partial_{\beta,\psi}^{3\alpha}u}{\partial_{\beta,\psi}x^{\alpha}\,\partial_{\beta,\psi}y^{\alpha}\,\partial_{\beta,\psi}z^{\alpha}}= f(x,y,z,u(x,y,z),\frac{\partial^{\alpha}_{\beta,\psi}}{\partial_{\beta,\psi}x^{\alpha}}u(x,y,z),\frac{\partial^{\alpha}_{\beta,\psi}}{\partial_{\beta,\psi}y^{\alpha}}u(x,y,z),\frac{\partial^{\alpha}_{\beta,\psi}}{\partial_{\beta,\psi}x^{\alpha}}u(x,y,z))

\end{equation}

where, $\frac{\partial^{\alpha}_{\beta,\psi}}{\partial_{\beta,\psi}x^{\alpha}}u(x,y,z)$ is the $\psi $ - Hilfer fractional partial derivative [1], with parameter $ 0<\alpha<1 $ and $ 0\leq \beta\leq 1$, $ 0 \leq x \leq a $, \,  $ 0 \leq y \leq b $, \,$0 \leq x \leq c $ and $f\in C ([0,a)\times[0,b)\times[0,c)\times\mathbb{B}^{4},\mathbb{B})$ and $(\mathbb{B},\mid.\mid)$ a real or complex Banach space.

 


Full Text: PDF

Published: 2020-03-03

How to Cite this Article:

Govind P. Kamble, Mohammed Mazhar-Ul-Haque, Remark on stability of fractional order partial differential equation, J. Math. Comput. Sci., 10 (2020), 584-600

Copyright © 2020 Govind P. Kamble, Mohammed Mazhar-Ul-Haque. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Copyright ©2024 JMCS