Arithmetico geometric decomposition of some graphs
Abstract
A decomposition (Gab, G(a+d)br, …, G(a+(n-1)d)brn-1) of G is said to be a Arithmetico Geometric Decomposition (ACOGD) or (a, d, b, r, n) – Decomposable if each G(a+(i-1)d)bri-1 is connected and |E(G(a+(i-1)d)bri-1)| = (a + (i - 1)d) bri-1 for every i = 1, 2, ...., n and a, d, b, r (>1) ∈ N. Clearly, q = b(a-(a+(n-1)d) r^n)/(1-r) + dbr(1-r^(n-1)/(1-r)^2, for every n∈ N. In this paper, we seek to find Arithmetico Geometric Decomposition of some graphs.
Copyright ©2024 JMCS