On the average degree eigenvalues and average degree energy of graphs
S. C. Patekar, S. A. Barde, M. M. Shikare
Abstract
Given a graph $G$ with $n$ vertices $v_1, v_2, \dots, v_n$ and the vertex degrees $d_1, d_2,...,d_n$ respectively. We associate to $G$ an average degree matrix $A_v(G)$ whose $(i,j)^{th}$ entry is $\frac{d_i + d_j}{2}$. We explore some properties of the eigenvalues and energy of $A_v(G)$.
Full Text:
PDF
How to Cite this Article:
S. C. Patekar, S. A. Barde, M. M. Shikare, On the average degree eigenvalues and average degree energy of graphs,
J. Math. Comput. Sci., 9 (2019), 46-59
Copyright © 2019 S. C. Patekar, S. A. Barde, M. M. Shikare. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2024 JMCS